CENTRO UNIVERSITÁRIO DO SUL DE MINAS - UNIS BACHARELADO EM ENGENHARIA MECÂNICA CLEBSON BATISTA SANTANA

ANÁLISE ESTRUTURAL E AVALIAÇÃO DA SEGURANÇA DE UM GALPÃO METÁLICO DE ACORDO COM A ABNT NBR 8800:2008

VARGINHA

CLEBSON BATISTA SANTANA

ANÁLISE ESTRUTURAL E AVALIAÇÃO DA SEGURANÇA DE UM GALPÃO METÁLICO DE ACORDO COM A ABNT NBR 8800:2008

Projeto de pesquisa apresentado ao curso de Engenharia Mecânica do Centro Universitário do Sul de Minas, sob orientação do Professor Matheus Henrique.

VARGINHA

AGRADECIMENTOS

Agradeço a todos os meus familiares, meus pais, a todos que me deram condições para seguir em frente nos estudos, meu professor orientador Matheus Henrique, e a todos os meus amigos e colegas de sala que contribuíram para o meu crescimento acadêmico e profissional.

RESUMO

O seguinte trabalho faz uma análise dos elementos estruturais de um galpão em

estrutura metálica, este que por sua vez, encontra-se totalmente edificado. Este estudo faz-se

necessário pois existem diversas estruturas que são construídas sem nenhum projeto

estrutural, contando apenas com a experiência profissional das equipes de montagem, como é

o caso do galpão em estudo. O objetivo fundamental deste trabalho é verificar se os elementos

estruturais utilizados no galpão atendem às exigências da NBR 8800: 2008. Para isto, foi

necessário a verificação no local do galpão, coletando-se todas as informações arquitetônicas

da estrutura, além dos perfis empregados em sua construção, e se tratando de aço, tomando

como base suas propriedades mecânicas, para posteriormente serem executados os cálculos

baseados nas considerações pertinentes aos estados limites ultimo e de serviço. Assim, foram

verificadas as ações do vento na edificação, tomando como referência a NBR 6123, e assim

realizados os cálculos para obtenção dos valores reais das ações a que realmente a estrutura

esta sendo submetida.

Palavras-chave: NBR 8800: 2008. Estruturas metálicas. Verificação.

ABSTRACT

The following work makes an analysis of the structural elements of a shed in metallic structure, which in turn, is fully built. This study is necessary because there are several structures that are built without any structural design, relying only on the professional experience of the assembly teams, as is the case of the shed under study. The main objective of this work is to verify if the structural elements used in the shed meet the requirements of NBR 8800: 2008. For this, it was necessary to verify the shed's location, collecting all the architectural information of the structure, besides the profiles used in its construction, and steel, based on its mechanical properties, and then perform the calculations based on the considerations pertinent to the final and service limit states. Thus, the actions of the wind were verified in the building, taking as reference to NBR 6123, and thus the calculations were made to obtain the actual values of the actions to which the structure is actually submitted.

Key words: NBR 8800: 2008. Metal structures. Verification.

LISTA DE FIGURAS

Figura 01: Diagrama tensão x deformação de aços dúcteis	20
Figura 02: Seções produzidas pela indústria siderúrgica	23
Figura 03: Seções produzidas pela indústria metalúrgica	24
Figura 04: Treliça plana nas duas faces laterais utilizada em passarela urbana	27
Figura 05: Momento fletor agindo no plano principal de inércia	30
Figura 06: Momento fletor agindo inclinado em relação ao plano principal de inércia	30
Figura 07: Viga I sujeita a FLA	31
Figura 08: Viga I sujeita a FLM	32
Figura 09: Viga I sujeita a FLT	33
Figura 10: Deslocamentos verticais a serem considerados	36
Figura 11: Fachada galpão metálico	37
Figura 12: Elementos estruturais do galpão	38
Figura 13: Seção transversal perfil "C" enrijecido	38
Figura 14: Seção transversal perfil "C"	39
Figura 15: Dois perfis "C" em conjunto	40
Figura 16: Pilar P8 visto lateralmente	41
Figura 17: Planta baixa arquitetônica do galpão e locação dos pilares	42
Figura 18: Gráfico de isopletas – Fato Vo	44
Figura 19: Telha trapezoidal modelo AT 40/ 980	48
Figura 20: Valores de sobrecarga em função do número de apoios e comprimento do vão	49
Figura 21: Carregamento aproximado para vão de 1,7 metros	50
Figura 22: COMBINAÇÃO 1 – Peso próprio + Sobrecarga – (KN/ m)	53
Figura 23: Diagrama de esforço cortante – Combinação 1 – PP + SC – (KN)	53
Figura 24: Diagrama de momento fletor – Combinação 1 – PP + SC – (KN.m)	53
Figura 25: COMBINAÇÃO 2 – Peso próprio + vento – (KN/ m)	54

Figura 26: Diagrama de esforço cortante – Combinação 2 – PP + Vento – (KN)	54
Figura 27: Diagrama de momento fletor – Combinação 2 – PP + Vento – (KN.m)	54
Figura 28: Medidas das barras em metros	59
Figura 29: Carregamentos pontuais peso próprio - (KN)	60
Figura 30: Carregamentos pontuais sobrecarga – (KN)	61
Figura 31: Carregamento distribuído vento caso A – (KN/ m)	61
Figura 32: Carregamento distribuído vento caso B – (KN/ m)	61
Figura 33: Padronização dos nós	62
Figura 34: Perfil composto da coluna	66

LISTA DE QUADROS

Quadro 01: Valores dos coeficientes de ponderação das resistências (γm)	25
Quadro 02: Coeficiente de flambagem por flexão de elementos isolados	29
Quadro 03: Parâmetros referentes ao momento fletor resistente	34
Quadro 04: Deslocamentos máximos	36
Quadro 05: Coeficientes para determinação fator - S2	45
Quadro 06: Valores mínimos do fator estatístico – S3	46
Quadro 07: Cpe – Valores obtidos e retirados do programa visual ventos para paredes	46
Quadro 08: Valores dos coeficientes para cobertura	47
Quadro 09: Valores dos coeficientes e valor característico do vento	47
Quadro 10: Pórtico a 0° e 90° respectivamente – valores em KN/ m	48
Quadro 11: Valores dos carregamentos	50
Quadro 12: Valores dos coeficientes para cálculo das telhas da cobertura e fechamlateral	
Quadro 13: Dados do perfil da terça da cobertura	52
Quadro 14: Carregamentos considerados para dimensionamento das terças da cobertura	52
Quadro 15: Dados do perfil da terça da cobertura	55
Quadro 16: Verificação para FLM	55
Quadro 17: Verificação para FLA	56
Quadro 18: Verificação para FLT	56
Quadro 19: Verificação para FLM	57
Quadro 20: Verificação para esforço cortante (KN)	58
Quadro 21: Verificação da flecha máxima	58
Quadro 22: Comprimento das barras da tesoura	59
Quadro 23: Peso próprio das barras da tesoura	60
Ouadro 24: Carregamentos e combinação dos carregamentos das barras (N)	62

Quadro 25: Dados do perfil da tesoura	63
Quadro 26: Verificação a compressão do perfil da tesoura (N)	64
Quadro 27: Combinações das reações de apoio – (N)	65
Quadro 28: Valores dos pesos considerados na verificação da coluna (N)	65
Quadro 29: Dados do perfil coluna	65
Quadro 30: Dados calculados para dois perfis "C"	66
Quadro 31: Carregamento admissível para esforço axial de compressão (N)	67
Quadro 32: Esforço axial de compressão (Nd), momento fletor (Md) e esforço cortante	e (Vd.67
Quadro 33: FLA – Flambagem lateral da alma	68
Quadro 34: FLM – Flambagem lateral da mesa	68
Quadro 35: FLT – Flambagem lateral com torção	69
Quadro 36: Verificação dos esforços combinados	69
Quadro 37: Verificação ao esforço cortante	69
Quadro 38: Resumo telhas	71
Quadro 39: Momentos admissíveis das terças para estados limites ultimo	72
Quadro 40: Momento das atuantes terças	72
Quadro 41: Verificação dos esforços combinados	72
Quadro 42: Resumo esforço cortante	73
Quadro 43: Resumo verificação das flechas	73
Quadro 44: Carregamentos atuantes e admissíveis	74
Quadro 45: Verificação ao esforço normal de compressão	74
Quadro 46: Momentos admissíveis das colunas para estados limites ultimo	75
Quadro 47: Carregamento 1 – esforço axial de compressão	75
Quadro 48: Carregamento 2 – esforço axial, momento fletor e esforço cortante	75
Quadro 49: Verificação dos esforços combinados	76
Quadro 50: Verificação ao esforço cortante	76
Quadro 51: Verificação ao esforço combinados da terça da cobertura	77

Quadro 52: Verificação da flecha máxima	77
Quadro 53: Verificação dos esforços combinados das vigas laterais	78
Quadro 54: Resumo telhas	79
Quadro 55: Resumo terças 1	80
Quadro 56: Resumo terças 2	80
Quadro 57: Resumo treliça	80
Ouadro 58: Resumo colunas	81

LISTA DE SÍMBOLOS

KzLz = coeficiente de flambagem por torção

γa1 = coeficiente de ponderação relacionado a escoamento, flambagem e instabilidade

γa1 = coeficiente de ponderação relacionado a ruptura

σcr = tensão normal crítica

MRd = momento fletor resistente de cálculo

MSd = momento fletor solicitante de cálculo

Nc, Rd = força axial de compressão resistente de cálculo

Nc, Sd = força axial de compressão solicitante de cálculo

Nt, Rd = força axial de tração resistente de cálculo

Nt, Sd = força axial de tração solicitante de cálculo

VRd = força cortante resistente de cálculo

VSd = força cortante solicitante de cálculo

fu = resistência a ruptura do aço

fy = resistência ao escoamento do aço

 λ o = índice de esbeltez reduzido

λp = parâmetro de esbeltez correspondente a plastificação

 λr = parâmetro de esbeltez correspondente ao inicio do escoamento

a = distância entre enrijicedores transversais adjacentes

Ac = área dos segmentos ligados

Ae = área liquida efetiva da secão transversal da barra

Aef = área efetiva da seção transversal

Ag = área bruta da seção transversal

An = área líquida da barra

Aw = área efetiva de cisalhamento

b = largura dos elementos comprimidos AL

bef = largura efetiva dos elementos comprimidos AA

bf = largura da mesa

bfi = largura da mesa inferior

bfs = largura da mesa superior

ca = coeficiente igual a 0,38 para mesas e almas de seção tubulares, retangulares ou quadradas e 0,34 para os demais casos

Cb = fator de modificação para diagrama de momento fletor não-uniforme

Ct = coeficiente de redução da área líquida

Cw = constante de empenamento da seção transversal

d = altura externa da seção

d = diâmetro da barra

D = diâmetro externo da seção tubular circular

E = módulo de elasticidade do aço

ec = excentricidade do plano de ligação em relação ao centro geométrico da seção da porção que resiste ao esforço de tração

G = módulo de elasticidade transversal do aço

h = altura da alma

I = momento de inércia de seção transversal em relação a um dos eixos principais de inércia

Iy = momento de inércia em relação ao eixo y

J = constante de torção da seção transversal

KL = comprimento de flambagem por flexão em relação a um dos eixos principais de inércia

L = comprimento efetivo de ligação

Lb = distância entre duas seções contidas a flambagem lateral com torção (comprimento destravado).

Lv = distância entre as seções de forças cortantes máxima e nula

Ma = valor do momento fletor solicitante de cálculo situado a um quarto do comprimento destravado, medido a partir da extremidade esquerda

Mb = valor do momento fletor solicitante de cálculo situado na seção central do comprimento destravado

Mc = valor do momento fletor solicitante de cálculo situado a três quartos do comprimento destravado, medido a partir da extremidade esquerda

Mcr = momento fletor de flambagem elástica

Mmax = valor máximo do momento fletor solicitante de cálculo no comprimento destravado

Mpl = momento fletor de plastificação

Mr = momento fletor correspondente ao início do escoamento, incluindo a influência das tensões residuais (exceto para flambagem local da mesa)

Ne = força axial de flambagem elástica

Q = fator de redução total associado a flambagem local

Qa = fator de redução que leva em conta flambagem local dos elementos AA

Qs = fator de redução que leva em conta flambagem local dos elementos AL

ro = raio de giração polar da seção bruta em relação ao centro de cisalhamento

rx = raio de giração em relação ao eixo central x

ry = raio de giração em relação ao eixo central y

ryc = raio de giração da seção T

t = espessura da parede

td = espessura de cálculo da parede da seção transversal, tomada igual a 0,93 vezes a espessura nominal para tubos com costura, e igual a espessura nominal para tubos sem costura

tf = espessura da mesa

tfi = espessura da mesa inferior

tfs = espessura da mesa superior

tw = espessura da alma

Vpl = força cortante correspondente a plastificação da alma por cisalhamento

W = módulo resistente elástico

Wc = módulo resistente elástico do lado comprimido da seção

Xo = coordenada do centro de cisalhamento na direita do eixo x em relação ao centro geométrico da seção

Yo = coordenada do centro de cisalhamento na direita do eixo y em relação ao centro geométrico da seção

Z = módulo de resistência plástico

 λ = parâmetro de esbeltez da seção transversal

X = fator de redução associado a resistência a compressão

SUMÁRIO

1	INTRODUÇÃO	17
2	OBJETIVO	18
2.1	Objetivo geral	18
2.2	Objetivos específicos	18
3	REFERENCIAL TEÓRICO	19
3.1	Estruturas metálicas	19
3.2	Propriedades dos aços estruturais	20
3.3	Propriedades mecânicas do aço estrutural	21
3.4	Propriedades geométricas do aço estrutural	22
3.5	Estados Limites	24
3.5.1	Estado limite último – ELU	24
3.5.2	2 Estados limites de serviço - ELS	25
3.6	Esbeltez	26
3.7	Tração	26
3.8	Compressão	28
3.9	Flexão	29
3.10	Momento fletor resistente de cálculo	30
3.10	.1 Flambagem local – FLA e FLM	31
3.10	.2 Flambagem Lateral com torção	32
3.11	Cisalhamento	35
3.12	Deslocamento Máximo – Flecha	35
4	METODOLOGIA	37
4.1	O galpão	37
4.2	Verificação quanto à estabilidade da estrutura	42
4.2.1	Dados preliminares do projeto	42

4.3	Cálculo da ação do vento
4.4	Carregamento nas telhas da cobertura
4.5	Carregamento nas telhas do fechamento lateral
4.6	Carregamento das terças
4.7	Verificação do perfil da terça
4.8	Cálculo e verificação das tesouras
4.9	Cálculo e verificação das colunas 64
5	RESULTADOS E DISCUSSÕES
5.1	Telhas da cobertura e fechamento lateral
5.2	Análise final das terças
5.3	Treliça74
5.4	Coluna
5.5	Sugestões
6	CONCLUSÃO79
REF	ERÊNCIAS82
ANE	EXO I
ANE	EXO II
ANE	EXO III
ANE	EXO IV
ANE	EXO V

1 INTRODUÇÃO

Toda estrutura, neste caso, de aço, deve ser levado em consideração um auxilio e acompanhamento de um profissional técnico habilitado, buscando sempre a segurança e o bom desempenho estrutural, atribuídos as normas técnicas e bibliografias pertinentes ao tema.

O seguinte trabalho refere-se a uma análise estrutural de um galpão metálico, localizado no município de Pouso Alegre, no estado de Minas Gerais. Sendo assim, foram verificados através de cálculos matemáticos, a credibilidade junto á estabilidade estrutural do galpão, tomando como base a norma ABNT NBR 8800: 2008.

Deste modo, as verificações normativas fazem-se necessárias para o conhecimento das ações atuantes na estrutura e, consequentemente realizar se necessário, medidas que possibilitem uma melhoria para a segurança estrutural da edificação.

2 OBJETIVO

2.1 Objetivo geral

O objetivo fundamental deste trabalho, é verificar se os perfis empregados no galpão metálico atendem e resistem aos carregamentos encontrados, se atendem fundamentalmente a ABNT NBR 8800: 2008, e se caso não atendam, quais as melhorias poderiam serem realizadas para o perfeito funcionamento da estrutura.

2.2 Objetivos específicos

- Calculo da estrutura, utilizando os perfis de acordo com as tabelas encontradas;
- Verificação da estrutura de acordo com a ABNT NBR 8800: 2008 utilizando os perfis locais;
- Sugestão de melhorias caso algum item não atenda a norma citada.

3 REFERENCIAL TEÓRICO

Este capítulo tem por objetivo apresentar algumas informações do aço utilizadas no trabalho, expondo suas propriedades, comportamento e características necessárias para o dimensionamento.

3.1 Estruturas metálicas

De acordo com Pfeil e Pfeil (2009), por volta dos anos 1780 e 1820 foram registradas as primeiras formas de utilização do aço nas construções, produzidos com elementos de ferro fundido, trabalhando em compressão. No entanto no Brasil, no ano de 1857 foi inaugurada a ponte sobre o rio Paraíba do Sul, no estado do Rio de Janeiro, com vãos de 30m vencidos por arcos atirantados. Ainda segundo Pfeil e Pfeil (2009), um ano antes, em 1856, o aço passou a ser produzido em escala comercial mais acessível, graças ao inglês Henry Bessemer, que inventou um forno que produzia aço de forma mais produtiva em escala industrial.

De forma semelhante, Pinheiro (2005), afirma que a partir de 1812 já havia fabricação de aço no Brasil, entretanto só em 1946 com a implantação das grandes siderúrgicas, que iniciou-se a fabricação em longa escala.

De acordo com Pinheiro (2005), dentre as vantagens da utilização das estruturas metálicas, tem-se como exemplo:

Fabricação das estruturas com precisão milimétrica;

Propriedades mecânicas bem definidas por se tratar de um material homogêneo;

Resistência a choques e vibrações;

Possibilidades de obras mais rápidas e limpas;

Reaproveitamento dos materiais não utilizados ou descartados.

Do mesmo modo, Pinheiro (2005), cita as principais desvantagens:

Limitação da execução em fábrica;

Necessidade de tratamento devido à oxidação;

Mão de obra especializada para a execução.

3.2 Propriedades dos aços estruturais

Para Pinheiro (2005), os aços estruturais são fabricados de acordo com suas propriedades mecânicas e/ou químicas, conforme sua necessidade. Sem dúvida alguma, a escolha do aço será determinante para o dimensionamento do perfil constituinte de uma determinada estrutura. Para isto, é importante conhecer o diagrama Tensão x Deformação, diagrama este que ilustra o comportamento de aço dúctil em corpos de prova submetidos ao esforço normal de tração.

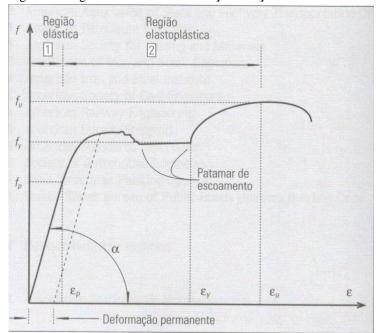


Figura 1: Diagrama Tensão x Deformação de aços dúcteis.

Fonte: Pinheiro (2005).

Neste caso temos:

f – Tensão do material; (f = N/A) onde, N – força normal e, A – área de seção transversal;

fu – Tensão última;

fy - Tensão de escoamento;

fp - Tensão de proporcionalidade;

 \mathcal{E} - Deformação específica; ($\mathcal{E} = \underline{\Delta}.L/L$) onde, $\underline{\Delta}.L$ - deformação unitária e, L - comprimento do corpo de prova;

 $\epsilon_{u-Deformação}\ {\rm espec}{\rm \'efica}\ {\rm na}\ {\rm ocorr}{\rm \'encia}\ {\rm da}\ {\rm \'ultima}\ {\rm tens\~ao};$

Ey – Deformação específica limite quando ocorre a tensão de escoamento;

 ϵ_{p} – Deformação específica quando ocorre a tensão de proporcionalidade;

α – Ângulo de inclinação da reta da região elástica.

3.3 Propriedades mecânicas do aço estrutural

O aço e suas propriedades variam bastante de acordo com as substancias incorporadas a sua liga. Por exemplo, Segundo Pfeil e Pfeil (2009), o aço pode conter em sua composição de 0,008% a 2,11% de carbono, sendo que o carbono aumenta sua resistência mecânica, no entanto o torna mais frágil. Teores baixos de carbono reduzem resistência a tração, porém aumentam sua ductilidade.

De acordo com Pfeil e Pfeil (2009), as resistências de ruptura (tração e compressão) de aços estruturais são semelhantes, variando nos limites de 300 MPA até limites superiores a 1200 MPA.

A norma ABNT NBR 8800: 2008 estabelece valores para as características dos aços, relacionados às suas propriedades mecânicas, no objetivo de padronizar considerações a serem levadas em conta pelos projetistas no dimensionamento, são as seguintes constantes:

- a) Módulo de elasticidade, E = Ea = 200.000 MPA;
- b) Coeficiente de Poisson Va = 0.3;
- c) Modulo de elasticidade transversal, G = 77.000 MPA;
- d) Coeficiente de dilatação térmica, $\beta a = 1.2 \times 10^{-5} \,^{\circ}\text{C}^{-1}$;
- e) Massa específica, $\rho = 7.850 \text{ Kg/m}^3$.

Do mesmo modo Pfeil e Pfeil (2009), cita algumas das principais propriedades do aço, como ductilidade, fragilidade, resiliência, tenacidade, dureza, fadiga, corrosão e efeito de temperatura. Sendo:

Ductilidade – capacidade do material se deformar sob a ação das cargas. Os aços dúcteis sujeitos a tensões elevadas podem sofrer deformações plásticas capazes de redistribuir as tensões;

Fragilidade – é a capacidade do aço se tornar frágil pela ação de diversos agentes como, baixas temperaturas ambientes, efeitos térmicos locais, causados por exemplo, por solda elétrica;

Resiliência – capacidade de absorção de energia mecânica em regime plástico;

Tenacidade – é a energia total, tanto elástica quanto plástica que o material pode absorver por unidade de volume até a sua ruptura.

Dureza – é a resistência ao risco de abrasão;

Efeito de temperatura elevada – Após o material ultrapassar a temperatura de 100°C, há uma tendência em eliminar o limite de escoamento, tornando-o arredondado em seu diagrama de tensão x deformação;

Fadiga – capacidade do material em resistir a tensões inferiores as tensões obtidas em ensaios estáticos. A fadiga ocorre quando as peças trabalham sob esforços repetitivos em grande número.

Corrosão – processo de reação do aço com alguns elementos presentes no ambiente, promovendo a perda de seção das peças de aço, podendo haver colapso por falta da mesma.

3.4 Propriedades geométricas do aço estrutural

Assim como as propriedades mecânicas, os perfis de aço possuem propriedades geométricas padronizadas, a fim de estabelecer organizadamente a produção das diferentes seções de uma mesma geometria (altura da alma, altura da mesa, espessura etc), de sua seção transversal, além dos comprimentos comerciais, facilitando as considerações a serem avaliadas pelo projetista.

Quanto a sua produção, existem diferentes origens industriais nos quais são produzidos os perfis metálicos, dentre eles estão os perfis siderúrgicos e os perfis metalúrgicos.

Segundo Pinheiro (2005), as peças de origem siderúrgica podem ser basicamente classificadas como:

Perfis, barras e chapas, como mostra a figura 2:

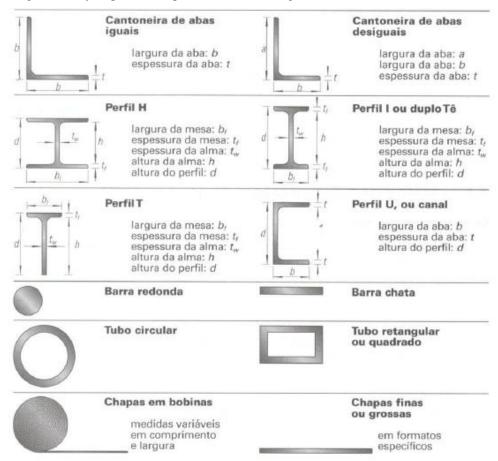


Figura 2 - Seções produzidas pela indústria Siderúrgica

Fonte: Pinheiro (2005).

Já os perfis metalúrgicos, são perfis compostos por chapas dobradas e chapas soldadas, como mostra a figura 03:

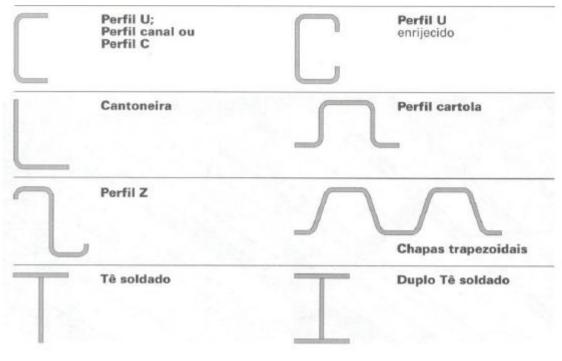


Figura 03 – Seções produzidas pela indústria metalúrgica

Fonte: Pinheiro (2005).

3.5 Estados Limites

De acordo com Pfeil e Pfeil (2009), Estado-limite ocorre quando a estrutura em questão não satisfaz seus objetivos, isto é, deixa de garantir o bom desempenho e a segurança estrutural.

3.5.1 Estado limite último – ELU

Para Fakury (2016), estado limite último é a capacidade da estrutura em suportar plenamente os carregamentos a que esta for submetida, a ocorrência do Estado limite último – ELU, esta atrelada ao colapso total ou parcial, associada à falha material, instabilidade do conjunto estrutural e ao movimento de um corpo rígido.

Do mesmo modo, Pfeil e Pfeil (2009), explica que os estados limites últimos associam-se a ocorrência de cargas excessivas, logo há o colapso da estrutura, como por exemplo:

- Perda de equilíbrio como corpo rígido;
- Plastificação total de um elemento estrutural;
- Ruptura de uma ligação ou seção;

- Flambagem em regime elástico ou não;
- Ruptura por fadiga.

A ABNT NBR 8800: 2008, no item 4.8.2, pag. 23, dispõe da tabela com valores dos coeficientes de ponderação das resistências γ_m , do aço estrutural, do concreto e do aço das armaduras, em função da classificação de combinação última das ações.

Quadro 01 – Valores dos coeficientes de ponderação das resistências (γm)

Combinações	Aço estrutural γa1 Escoamento, flambagem e instabilidade γa1	Aço estrutural γa1 Ruptura γa1	Concreto γc	Aço das Armaduras γs
Normais	1,10	1,35	1,4	1,15
Especiais ou de construções	1,10	1,35	1,2	1,15
Excepcionais	1,00	1,15	1,2	1,00

Fonte: (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008, p. 23)

3.5.2 Estados limites de serviço - ELS

De acordo com Fakury (2016), estado limite de serviço é a capacidade da estrutura em desempenhar satisfatoriamente as funções para a qual foi planejada. Neste estado-limite à funcionalidade e/ou a estética do ambiente são comprometidos, de modo que patologias como fissuras, rachaduras e trincas, por exemplo, apareçam de forma contundente. No entanto, o autor explica que para que sejam evitadas tais ocorrências, é necessário que haja as verificações previstas na ABNT NBR 8800: 2008, como o cálculo e verificação da flecha máxima admissível.

3.6 Esbeltez

Segundo a norma ABNT NBR 8800: 2008, esbeltez (λ) é a relação entre largura e espessura (b / t) em elementos comprimidos dos perfis metálicos. De acordo com os valores de esbeltez (λ), dos componentes comprimidos em relação a λ p e λ r, as seções podem ser classificadas como:

- a) Compactas seções cujos valores de λ são inferiores a λp ;
- b) Semicompactas seções em que λ é superior a λ p, porém inferior a λ r;
- c) Esbelta, seções cujos valores de λ são superiores a λr .

3.7 Tração

Para Pfeil e Pfeil (2009), peças tracionadas são peças sujeitas a esforços de tração axial, ou a tração simples. O autor ainda cita que estas peças são empregadas nas estruturas sob as formas de:

Tirantes ou pendurais;

Contraventamentos de torres;

Travejamentos de vigas ou colunas;

Tirantes de vigas armadas

Barras tracionadas de treliças.

Fakury (2016), sugere que nos edifícios construídos em estruturas metálicas, as barras tracionadas aparecem em sua maior incidência compondo treliças planas, estas que funcionam como vigas de piso e de cobertura, além também de serem bastante usuais em passarelas, neste caso, treliças planas nas duas faces laterais, como mostra a figura 01.

Figura 04 – Treliça plana nas duas faces laterais utilizadas em passarela urbana

Fonte: Cassiano Rolim/ TV Anhanguera

A (NBR ABNT 8800: 2008, p. 43), estabelece para barras prismáticas submetidas à força axial de tração a seguinte condição:

$$N_{\rm t,Sd} \leq N_{\rm t,Rd}$$

Onde:

Nt, Sd – força axial de tração solicitante de cálculo;

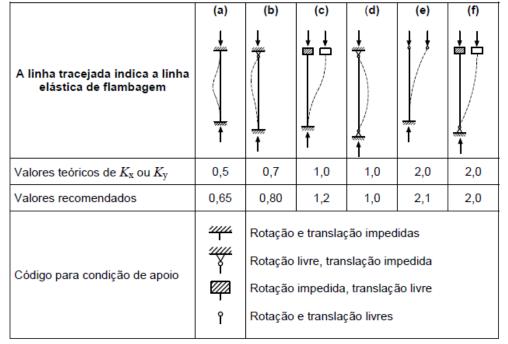
Nt, Rd – força axial de tração resistente de cálculo;

Ainda segundo a norma, o índice de esbeltez das barras submetidas a força de tração, deverá ser limitada a 300, isto é, a relação (L / r), sendo "L" o comprimento destravado e, "r" o raio de giração.

3.8 Compressão

Segundo Chamberlain (2003), elementos comprimidos possuem tensões distribuídas axialmente constantes, sendo que o colapso é caracterizado por instabilidade ou flambagem atribuídas pela flexão.

Deste modo, Pfeil e Pfeil (2009), explica que ao contrário das forças axiais de tração, esta que há uma tendência em retificar as peças reduzindo o efeito de curvaturas, o esforço de compressão acentua ainda mais o efeito de curvaturas. O autor ainda conclui que para os deslocamentos laterais produzidos, há a ocorrência do fenômeno de flambagem por flexão, este fenômeno que por sua vez reduz a capacidade de carga da peça.


A norma (NBR ABNT 8800: 2008, p. 43), no qual aplica-se para as barras prismáticas submetidas a força normal de compressão a seguinte condição geral:

$$N_{\text{c.Sd}} \leq N_{\text{c.Rd}}$$

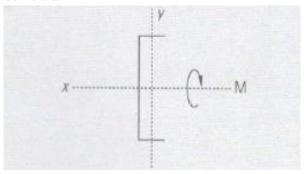
Nc, Sd – Força axial de compressão solicitante de cálculo;

Nc, Sd – Força axial de compressão solicitante de cálculo;

A norma ainda estabelece que para perfis que, sejam eles submetidos a esforço axial de compressão, o índice de esbeltez deve ser limitado a 200, tomando como relação (K.L / r), sendo "K" coeficiente de flambagem dado no quadro 02, "L" o comprimento de flambagem e "r" é o raio de giração da peça.

Quadro 02 – Coeficiente de flambagem por flexão de elementos isolados.

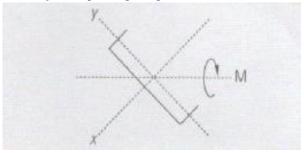
Fonte: (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008, p. 125)


3.9 Flexão

O fenômeno da flexão talvez seja o mais complexo e variável no dimensionamento de uma estrutura, pois é necessário saber quais esforços atuam internamente no perfil no momento de utilização.

Para isso Pinheiro (2005), classifica cada tipo de flexão de acordo com seus esforços internos atuantes, são eles:

- a) Flexão pura Neste caso, há somente o momento fletor agindo na barra, sendo que, há ainda dois tipos de flexão pura:
 - Plana Onde o plano de atuação do momento fletor esta coincidindo com o plano principal de inércia da peça, figura 05.


Figura 05 – momento fletor agindo no plano principal de inércia.

Fonte: Pinheiro (2005)

• **Oblíqua** – Onde o plano de atuação do momento fletor é inclinado em relação ao plano principal de inércia, figura 06.

Figura 06 – momento fletor agindo inclinado em relação aos planos principais de inércia.

Fonte: Pinheiro (2005).

- b) Flexão simples Neste caso há atuação do momento fletor somado ao esforço cortante.
- c) Flexão composta Neste caso o momento fletor pode atuar somado ou não ao esforço cortante, porém sendo combinado com a força normal ou momento torsor ou ambos os esforços.

3.10 Momento fletor resistente de cálculo

De acordo com a ABNT NBR 8800:2008, o momento fletor resistente de cálculo – M_{Rd}, deverá ser determinado utilizando as tabelas encontradas nos anexos G ou H da norma. Para isto, deverá ser analisado os esforços internos solicitantes a fim de se obter as verificação necessárias

com relação aos estados-limites de flambagem. Deste modo, a seguir, serão apresentadas as verificações dos estados-limites descritos na norma.

3.10.1 Flambagem local – FLA e FLM

Para Fakury (2016), a verificação de FLM – Flambagem local da mesa comprimida e FLA – Flambagem local da alma, deve ser feita tomando como referência toda a viga, comparando o maior Msd com o MRd, sendo que o momento fletor atuante – Msd, deve ser inferior ao momento fletor resistente de cálculo - MRd.

De acordo com a norma ABNT NBR 8800: 2008, para os estados FLA e FLM o momento fletor de cálculo é dado por:

$$M_{\,\mathrm{Rd}} = \frac{M_{\,\mathrm{p}\ell}}{\gamma_{\,\mathrm{a}1}}\,\mathrm{,\;para}\;\lambda \leq \lambda_{\,\mathrm{p}}$$

$$\boldsymbol{M}_{\mathrm{Rd}} = \frac{1}{\gamma_{\mathrm{a1}}} \Bigg[\boldsymbol{M}_{\mathrm{p}\ell} - (\boldsymbol{M}_{\mathrm{p}\ell} - \boldsymbol{M}_{\mathrm{r}}) \frac{\lambda - \lambda_{\mathrm{p}}}{\lambda_{\mathrm{r}} - \lambda_{\mathrm{p}}} \Bigg], \text{ para } \lambda_{\mathrm{p}} < \lambda \leq \lambda_{\mathrm{r}}$$

$$M_{
m Rd} = {M_{
m cr} \over \gamma_{
m a1}}$$
 , para $\, \lambda > \lambda_{
m r} \,$ (não aplicável à FLA - ver Anexo H)

Onde o índice de esbeltez FLA da peça necessita ser verificado de acordo com sua seção transversal, segundo a figura 07:

X t_w

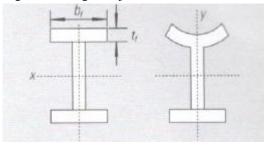
Figura 07 – Viga I sujeita a FLA

Fonte: Pinheiro (2005)

Dada pela equação:

 $\lambda a = h / tw$

Onde:


h = altura da alma;

tw = espessura da alma;

 $\lambda a = parâmetro de esbeltez da FLA.$

Assim como FLA, peças sujeitas a FLM devem ser verificadas de acordo com seu índice de esbeltez, sua seção transversal dada pela figura 08.

Figura 08 - Viga I Sujeita a FLM

Fonte: Pinheiro (2005)

Dada pela equação:

 $\lambda m = (bf/2)/tf$

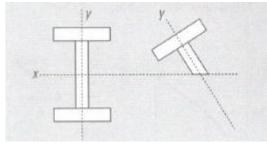
Onde:

bf = largura da mesa;

tf = espessura da mesa;

 λm = parâmetro de esbeltez da FLM.

3.10.2 Flambagem Lateral com torção


Segundo Fakury (2016), quando vigas assim como todas as barras de aço, são submetidas ao esforço de momento fletor crescente em relação ao eixo x (eixo de maior inércia), a curvatura (flambagem) e a torção aumentam gradativamente até o colapso.

A norma NBR ABNT 8800: 2008 estabelece para os tipos de seções e eixos de flexão indicados no Quadro 01, para o estado-limite de Flambagem lateral com torção o seguinte momento fletor resistente de cálculo:

$$\begin{split} &M_{\rm Rd} = \frac{M_{\rm p\ell}}{\gamma_{\rm a1}} \,,\, {\rm para} \,\, \lambda \leq \lambda_{\rm p} \\ &M_{\rm Rd} = \frac{C_{\rm b}}{\gamma_{\rm a1}} \Bigg[M_{\rm p\ell} - (M_{\rm p\ell} - M_{\rm r}) \frac{\lambda - \lambda_{\rm p}}{\lambda_{\rm r} - \lambda_{\rm p}} \Bigg] \leq \frac{M_{\rm p\ell}}{\gamma_{\rm a1}} \,,\,\, {\rm para} \,\, \lambda_{\rm p} < \lambda \leq \lambda_{\rm r} \\ &M_{\rm Rd} = \frac{M_{\rm cr}}{\gamma_{\rm a1}} \leq \frac{M_{\rm p\ell}}{\gamma_{\rm a1}} \,,\,\, {\rm para} \,\, \lambda > \lambda_{\rm r} \end{split}$$

Para a limitação do fenômeno de Flambagem Lateral com Torção – FLT, a norma ABNT NBR 8800: 2008 estabelece a relação comprimento de flambagem pelo raio de giração da peça.

Figura 09 – Viga I Sujeita a FLT

Fonte: Pinheiro (2005)

Dado pela equação:

$$\lambda lt = Lb / ry$$

Onde:

Lb = comprimento longitudinal do perfil sem contenção lateral;

 $r_y = \mbox{raio}$ de giro, em relação ao eixo principal de inércia perpendicular ao eixo de flexão;

λm = parâmetro de esbeltez da FLM.

O quadro 03 define as correlações para os cálculos de momento fletor de plastificação, momento fletor correspondente ao início do escoamento, ao índice de esbeltez correspondente a plastificação e ao início do escoamento.

Quadro 03 – Parâmetros referentes ao momento fletor resistente

Tipo de seção e eixo de flexão	Estados- límites aplicáveis	$M_{\rm r}$	$M_{\rm cr}$	λ	λ_p	$\lambda_{\rm r}$
Seções I e H com dois eixos de simetria e seções U não sujeitas a momento de torção, fletidas em relação ao eixo de maior momento de inércia	FLT	$(f_y - \sigma_r)W$ Ver Nota 5	Ver Nota 1	$\frac{L_{\rm b}}{r_{\rm y}}$	$1,76\sqrt{\frac{E}{f_y}}$	Ver Nota 1
	FLM	$(f_y - \sigma_r)W$ Ver Nota 5	Ver Nota 6	<i>b/t</i> Ver Nota 8	$0,38 \sqrt{\frac{E}{f_y}}$	Ver Nota 6
	FLA	$f_y W$	Viga de alma esbelta (Anexo H)	h t _w	$3,76\sqrt{\frac{E}{f_y}}$	$5,70\sqrt{\frac{E}{f_y}}$
Confee La Haam space	FLT	$(f_y - \sigma_t)W_c$ $\leq f_y W_t$ Ver Nota 5	Ver Nota 2	$\frac{L_{\rm b}}{r_{\rm yc}}$	$1,76\sqrt{\frac{E}{f_y}}$	Ver Nota 2
Seções I e H com apenas um eixo de simetria situado no piano médio da alma, fletidas em relação ao eixo de maior	FLM	$(f_{\rm y} - \sigma_{\rm r}) W_{\rm c}$ Ver Nota 5	Ver Nota 6	<i>b/t</i> Ver Nota 8	$0,38\sqrt{\frac{E}{f_y}}$	Ver Nota 6
momento de Inércia (ver Nota 9)	FLA	$f_y W$	Viga de alma esbelta (Anexo H)	h _e	$\frac{\frac{h_c}{h_p} \sqrt{\frac{E}{f_y}}}{\left(0.54 \frac{M_{pl}}{M_r} - 0.09\right)}$	$\left \frac{1}{0} \right ^2 \le \lambda_r$ $\left 5,70 \sqrt{\frac{E}{f_y}} \right $
Seções I e H com dois eixos de simetria e	FLM Ver Nota 3	$(f_y - \sigma_t)W$	Ver Nota 6	<i>b/t</i> Ver Nota 8	$0,38 \sqrt{\frac{E}{f_y}}$	Ver Nota 6
seções U fletidas em relação ao eixo de menor momento de inércia	FLA Ver Nota 3	$f_{ m y}W_{ m ef}$ Ver Nota 4	$rac{W_{ m ef}^2}{W}f_{ m y}$ Ver Nota 4	h t _w	$1,12\sqrt{\frac{E}{f_y}}$	$1,40 \sqrt{\frac{E}{f_y}}$
Seções sólidas retangulares fletidas em relação ao eixo de maior momento de inércia	FLT	$f_y W$	$\frac{2,00C_bE}{\lambda}\sqrt{JA}$	$\frac{L_{\rm b}}{r_{ m y}}$	$\frac{0.13E}{M_{pl}}\sqrt{JA}$	$\frac{2,00E}{M_r}\sqrt{JA}$
Seções-caixão e tubulares retangulares, duplamente simétricas, fletidas em relação a um dos eixos de simétria que seja paraleio a dois lados	FLT Ver Nota 7	(f _y −σ _r)₩ Ver Nota 5	$\frac{2,00C_bE}{\lambda}\sqrt{JA}$	$\frac{L_{\mathrm{b}}}{r_{\mathrm{y}}}$	$\frac{0.13E}{M_{pl}}\sqrt{JA}$	$\frac{2,00E}{M_r}\sqrt{JA}$
	FLM	$f_{ m y}W_{ m ef}$ Ver Nota 4	$rac{W_{ m ef}^2}{W}f_{ m y}$ Ver Nota 4	<i>b/t</i> Ver Nota 8	$1,12\sqrt{\frac{E}{f_y}}$	$1,40\sqrt{\frac{E}{f_y}}$
	FLA	$f_y W$	-	$\frac{h}{t_{\mathrm{w}}}$	Ver Nota 10	$5,70 \sqrt{\frac{E}{f_y}}$

Fonte: (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008, p. 134)

3.11 Cisalhamento

Para o dimensionamento do perfil a força cortante, a norma ABNT NBR 8800: 2008 estabelece a seguinte condição:

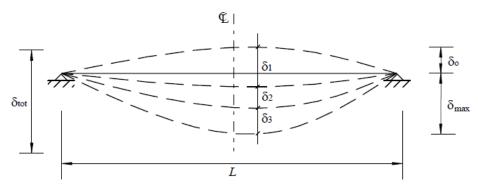
$$V_{\rm Sd} \leq V_{\rm Rd}$$

Onde:

Vsd-é a força cortante solicitante de cálculo;

VRd – é a força cortante resistente de cálculo, dada por:

 $V_{Rd} = V_{Rk} / \gamma_{a1}$


VRk – é a força cortante resistente nominal;

 γ_{a1} – é o coeficiente de ponderação resistente para os estados-limites referentes ao escoamento e a instabilidade, com valor igual a 1,10.

3.12 Deslocamento Máximo – Flecha

De acordo com a ABNT NBR 8800: 2008, define ζ 0 como sendo a contra flecha, ζ 1 é a contra flecha devido as forças permanentes de baixa duração, ζ 2 é a contra flecha devido a carregamentos permanentes de longa duração e ζ 3 é o deslocamento devido a ações variáveis, ζ max é o deslocamento máximo da viga.

Figura 10 – Deslocamentos verticais a serem considerados

Fonte: (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008, p. 116)

Os valores máximos para os deslocamentos são dados no quadro 04:

Quadro 04 – Deslocamentos máximos

Descrição	δ °
- Travessas de fechamento	L/180 b
- Travessas de rechamento	L/120 ^{cd}
- Terças de cobertura ^{g)}	L/180 °
- Terças de copertura	L/120 f
- Vigas de cobertura ^{g)}	L/250 h
- Vigas de piso	L/350 h
- Vigas que suportam pilares	L/500 h
Vigas de rolamento: ^{II}	
- Deslocamento vertical para pontes rolantes com capacidade nominal inferior a 200 kN	L/600 1
- Deslocamento vertical para pontes rolantes com capacidade nominal igual ou superior	L/800 ¹
a 200 kN, exceto pontes siderúrgicas - Deslocamento vertical para pontes rolantes siderúrgicas com capacidade nominal igual ou superior a 200 kN	L/1000 ¹
- Deslocamento horizontal, exceto para pontes rolantes siderúrgicas	L/400
- Deslocamento horizontal para pontes rolantes siderúrgicas	L/600
Galpões em geral e edifícios de um pavimento:	
- Deslocamento horizontal do topo dos pilares em relação à base	H/300
- Deslocamento horizontal do nível da viga de rolamento em relação à base	H/400 k l
Edifícios de dois ou mais pavimentos:	
- Deslocamento horizontal do topo dos pilares em relação à base	H/400
- Deslocamento horizontal relativo entre dois pisos consecutivos	h/500 ^m

Fonte: (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2008, p. 117)

4 METODOLOGIA

Neste capítulo serão apresentados os cálculos e verificações propostas pelo trabalho, sendo o objeto de estudo um galpão construído em estrutura metálica com vedação em blocos de concreto.

4.1 O galpão

Localizado no município de Pouso alegre, o Galpão Metálico foi construído frente a uma residência e, atualmente vem sendo desenvolvido as atividades do setor de serralheria em suas acomodações. O terreno possui área de 200m², e em sua vista de fachada é possível observar a entrada a esquerda para a residência, logo a sua direita o acesso a oficina.

Figura 11: Fachada galpão metálico

Fonte: O autor

Inicialmente foram feitas algumas avaliações técnicas no local, como conhecer os materiais utilizados em sua construção, locação dos cômodos, distancia entre as tesouras, seção dos perfis empregados ao longo da estrutura, comprimento dos vãos etc.

De um modo geral, visualmente o galpão possui um bom aspecto físico de execução. Ao começar pela cobertura que, embora simples, é composta por telhas trapezoidais, sendo chapas galvanizadas com espessura de 0,65mm apoiadas nas terças.

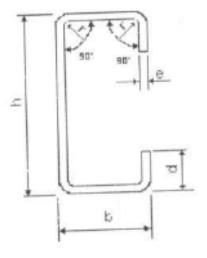
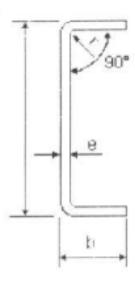


Figura 12: Elementos estruturais do galpão

Assim como as telhas da cobertura, as telhas do fechamento lateral são de chapa galvanizada de 0,65mm, utilizadas a partir dos 3m de altura.

As terças da cobertura assim como o fechamento lateral, possuem seção transversal de perfil "C" ou "U" enrijecidas, com chapas de espessura 3,04mm, apoiadas nas tesouras.


Figura 13: Seção transversal Perfil C enrijecido

Fonte: Pinheiro (2005)

Embora todas as tesouras sejam constituídas também por peças com seção transversal em perfil "C" ou "U", não há mais a utilização da chapa dobrada (d), para assim enrijecer a peça. A distância entre as tesouras são de 3,45m, distribuídas igualmente entre todas.

Figura 14: Seção transversal perfil C

Fonte: Pinheiro (2005)

Para apoiar as tesouras foram utilizados dois perfis "C" trabalhando em conjunto como uma só seção transversal, como mostra a figura 15:

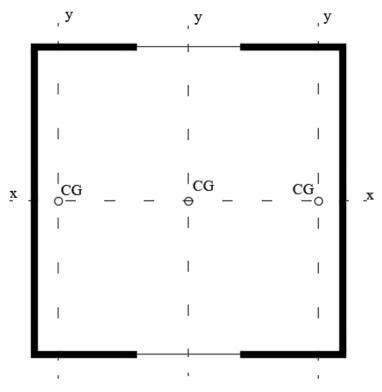


Figura 15: Dois perfis "C" em conjunto

Fonte: O autor, adaptado Autocad

Em sua vista lateral é possível observar os perfis "C" sendo ligados e travados lateralmente por perfis cantoneira.

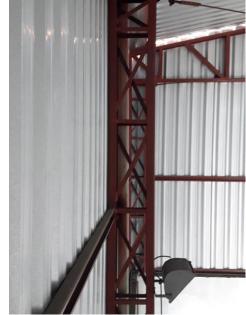


Figura 16: Pilar P8 visto lateralmente.

Fonte: O autor

É importante enfatizar que ao longo da estrutura foram utilizados duas medidas diferentes para a mesma seção transversal dos pilares, de modo que, os pilares P2, P5 e P10 possuem alma da seção transversal de 75mm, enquanto os demais pilares possuem alma de altura 150mm.

Um detalhe importante a ser considerado, é o fato de que os pilares citados acima não foram utilizados para suportar plenamente os carregamentos oriundos da cobertura, contudo para o fechamento lateral. O pilar P2 ainda é utilizado para auxiliar na fixação do portão e suportar os carregamentos oriundos do mezanino junto ao Pilar P5.

O galpão ainda possui alvenaria em bloco de concreto em todo seu perímetro, inclusive nas repartições internas, como no banheiro e na separação entre o acesso a garagem residencial e o acesso à oficina.

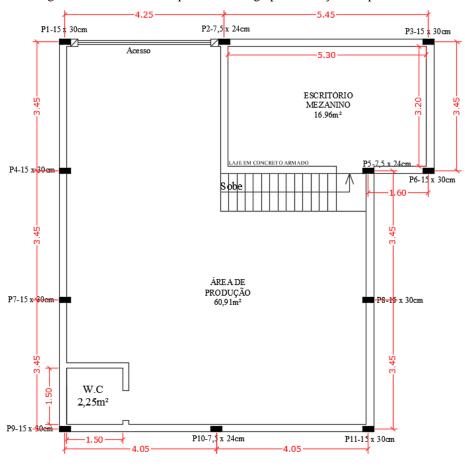


Figura 17: Planta baixa arquitetônica do galpão e locação dos pilares

Fonte: O autor, adaptado Autocad

4.2 Verificação quanto à estabilidade da estrutura

Os cálculos previstos segundo a norma ABNT NBR 8800:2008, para o dimensionamento dos perfis empregados na estrutura, foram desenvolvidos entre os meses de fevereiro a julho do ano de 2018.

4.2.1 Dados preliminares do projeto

- Cidade de Pouso Alegre, Bairro Morumbi.
- Todos os perfis e seções dos elementos estruturais componentes da estrutura do galpão são da série ASTM – A36;
- Cobertura em telha de aço galvanizado no formato trapezoidal;

- Declividade da cobertura 15°;
- As colunas são de dupla seção de perfil "C".
- Os fechamentos laterais são feitos em alvenaria com 3m de altura, como o pé direito total é de 5,9m o fechamento lateral em telha de aço galvanizada é de 2,9m.
- Maior dimensão de 10,35m e o lado com menor dimensão possui 10,0m de comprimento.

4.3 Cálculo da ação do vento

O cálculo da ação do vento foi verificado de acordo com a ABNT NBR 6123: 1988 – Forças devidas ao vento em edificações, e para isto, foram necessárias conhecer as dimensões externas do galpão, assim como sua altura. Os cálculos ainda contaram com a ajuda do programa visual ventos, que neste caso, forneceu uma precisão maior nos dados adotados e nos modelos de cálculos abordados.

Para calcular a ação do vento na estrutura, é preciso conhecer a pressão dinâmica ocorrida basicamente em três alturas pré-estabelecidas, sendo elas: 3,0m, 5,0m e 10,0m, dada a equação:

 $qvento = 0,613 \times Vk^2 (N/m^2)$

Onde:

 $Vk = Vo \times S1 \times S2 \times S3$

Onde:

Vo – Valor obtido a partir do gráfico de isopletas;

S1 – Fator topográfico;

S2 – Rugosidade;

S3 – Fator estatístico

Como o galpão possui 5,9m de altura de pé direito, para efeito de dimensionamento, será utilizado nos 0,9m excedentes dos 5,0m inteiros, os valores de 10,0m de altura.

Deste modo, foi encontrado um valor aproximado de 35m/s utilizando o gráfico de isopletas, tomando como base a ação do vento no município de Pouso Alegre – MG.

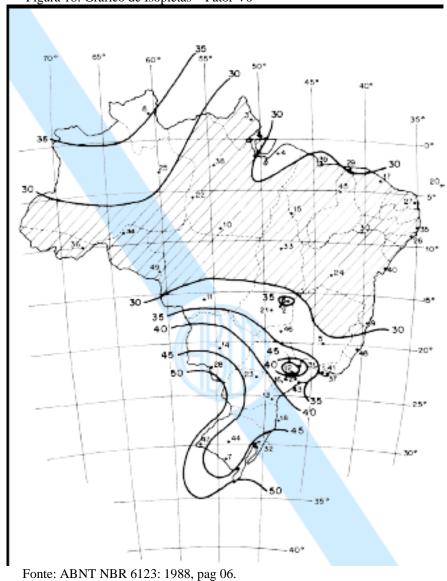


Figura 18: Gráfico de Isopletas – Fator Vo

Prosseguindo o dimensionamento, temos o fator S1, que para as características do galpão adotou-se o valor de 1,0, por se tratar de um local plano.

O fator S2 é encontrado em função de 3 características, são elas:

- Rugosidade do terreno 5 categorias;
- Dimensões da edificação 3 classes;
- Altura da atuação do vento, como já dito, 3,0m, 5,0m e 10,0m.

A equação geral para a determinação dos três fatores S2 é dada por:

$$S2 = b \times Fr \times (Z/10)^p$$

Onde:

b, Fr e p são dispostos no quadro 05, pag 09 da ABNT NBR 6123: 1988;

Z - Altura

Quadro 05: Coeficientes para determinação fator S2.

	Z _g		ililação fator 32.	Classes	
Categoria	(m)	Parâmetro	A	В	С
1	250	b	1,10	1,11	1,12
	200	р	0,06	0,065	0,07
		b	1,00	1,00	1,00
II	300	F,	1,00	0,98	0,95
		р	0,085	0,09	0,10
III	350	b	0,94	0,94	0,93
	330	р	0,10	0,105	0,115
IV	420	b	0,86	0,85	0,84
	.11	р	0,12	0,125	0,135
V	500	b	0,74	0,73	0,71
·	500	р	0,15	0,16	0,175

Fonte: ABNT NBR 6123: 1988, pag 09.

Por ultimo, antes do calculo da pressão dinâmica, é necessário conhecer a ultima variável S3, onde é determinado o fator estatístico.

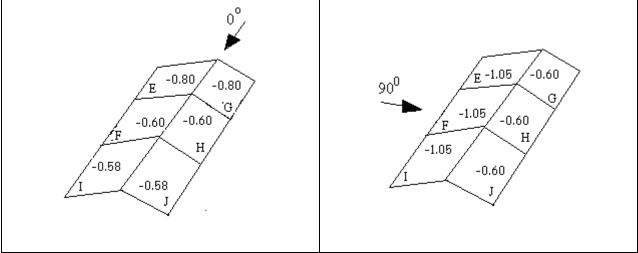
Quadro 06: Valores mínimos do fator estatístico - S3

Grupo	Descrição	S ₃
1	Edificações cuja ruína total ou parcial pode afetar a segurança ou possibilidade de socorro a pessoas após uma tempestade destrutiva (hospitais, quartéis de bombeiros e de forças de segurança, centrais de comunicação, etc.)	1,10
2	Edificações para hotéis e residências. Edificações para comércio e indústria com alto fator de ocupação	1,00
3	Edificações e instalações industriais com baixo fator de ocupação (depósitos, silos, construções rurais, etc.)	0,95
4	Vedações (telhas, vidros, painéis de vedação, etc.)	0,88
5	Edificações temporárias. Estruturas dos grupos 1 a 3 durante a construção	0,83

Fonte: ABNT NBR 6123: 1988, pag 10.

Após a obtenção de todas as variáveis, chegou-se a fase dos coeficientes de pressão externos - Cpe, ou seja, são conhecidos os valores em razão do ângulo de atuação do vento na edificação de acordo com a ABNT NBR 6123: 1988.

Para a atuação do vento no ângulo de 0° e 90°, ou seja, o vento atuando diretamente a partir da vista frontal e lateral temos os seguintes valores para as paredes do galpão.


-0.90 -0.50 0.70 Ci C2 -0.90 Α1 В1 -0.90 -0.50Α2 В2 -0.50 -0.50 В -0.48 ΑЗ ВЗ -0.48 -0.50 -0.50 -0.90

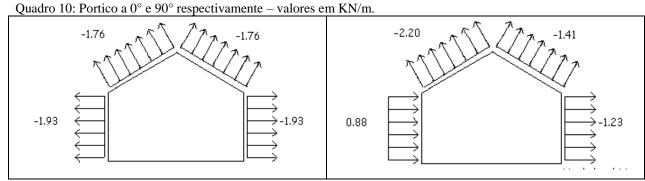
Quadro 07 : Cpe – Valores obtidos e retirados do programa visual ventos para paredes.

Fonte: Relatório Visual ventos, adaptado autor.

Do mesmo modo, com o auxilio do programa visual ventos, foi possível determinar os coeficientes externos para a cobertura.

 $Quadro\ 08: Cpe-Valores\ dos\ coeficientes\ para\ cobertura.$

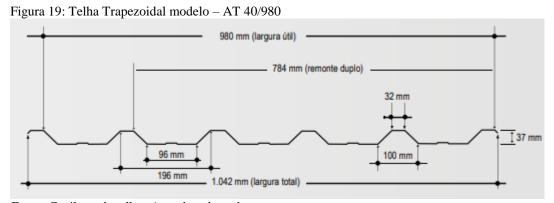
Fonte: Relatório Visual ventos, adaptado autor.


Os valores dos coeficientes imediatamente antes de serem calculados os carregamentos distribuídos nos pórticos são:

Quadro 09: Valores dos coeficientes e valor característico do vento

Cpe – coeficiente de pressão	Cpi - Coeficiente de pressão	Pressão Dinâmica do Vento:		
externo médio:	interno:			
1,1	Cpi 1 – 0,20	$q = 0.51 \text{ KN/m}^2$		
	Cpi 2 – -0,30			

Fonte: Relatório Visual ventos, adaptado autor.


Para efeito de cálculo serão apresentados os dois piores casos encontrados, ou seja, onde os valores dos carregamentos distribuídos nos pórticos são elevados em consideração ao galpão em estudo. Iremos tratar como vento 1 o pórtico com vento na direção de 0°, sendo o Cpi = 0,20. Já para o vento 2, irá ser considerado o pórtico com vento na direção de 90° com Cpi = 0,20. Dado o quadro 10 os respectivos pórticos:

Fonte: Relatório Visual ventos, adaptado autor.

4.4 Carregamento nas telhas da cobertura

Para o dimensionamento das telhas da cobertura foi utilizado o Catálogo de Telhas Ananda, o qual há uma variedade de telhas disponíveis no mercado. Para o nosso trabalho foi utilizada a telha mais próxima do encontrado in loco, como mostra a imagem a seguir:

Fonte: Catálogo de telhas Ananda, adaptado autor.

Conhecidas as dimensões das telhas, serão então definidos os carregamentos a que a telha suporta, deste modo o quadro a seguir fornece os carregamentos (Kg/m²) em função do número de apoios. Nota-se que quanto maior o vão entre os apoios, menor será a capacidade da telha para suportar a sobrecarga.

Figura 20: Valores de sobrecarga em função do número de apoios e comprimento do vão.

		DISTÂNCIA ENTRE APOIOS (mm)							
(mm)	N° DE APOIOS	2.000		2.250		2.500		2.750	
(11111)	AI OlOS	F	C	F	C	F	C	F	C
	* *	128	128	101	-	-	-	-	-
0,43	* * *	128	128	101	-	-	-	-	-
	* * *	161	161	127	127	103	103	-	-
		149	149	118	-	-	-	-	-
0,50	A A A	149	149	118	-	-	-	-	-
	* * * *	186	186	147	147	119	119	-	-
	* *	191	191	151	138	122	100	-	-
0,65	A A A	191	191	151	151	122	122	101	101
	* * * *	239	239	189	189	153	153	126	126

Fonte: Catálogo de telhas Ananda, adaptado autor.

De acordo com a tabela utilizada, considerando a espessura da telha de 0,65mm e os quatro apoios existentes na estrutura, obtemos o valor da sobrecarga limite admissível pela telha, encontrando um valor de 239 Kg/m² ou 2390 N/m². Porém, o vão que ocorre entre as telhas na estrutura possui 1,7m, logo não há na tabela um carregamento para esse comprimento. Neste caso, com ajuda do software excel, através das opções gráficas de dispersão, foi possível determinar qual a equação equivalente mais próxima para tal situação, de modo que o carregamento admissível para o vão de 1,7m, seja o mais próximo da realidade. Utilizando para o eixo das ordenadas os valores dos carregamentos atuantes e para o eixo das abscissas os valores dos vão dispostos na tabela.

A seguir a figura 21 apresenta a equação que mais se aproxima do carregamento admissível para o vão desejado, sendo que, R² deverá ser o mais próximo de 1(um).

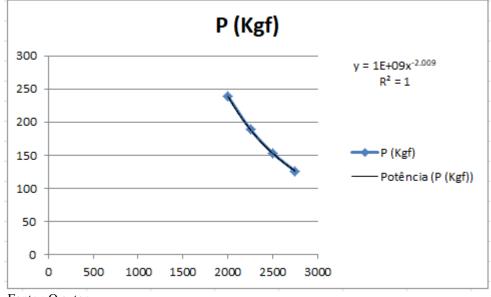


Figura 21: Carregamento aproximado para vão de 1,7 metros.

Desta maneira, a linha de tendência para função potencial é $Y = 1 \times 10^9 \times X^{-2.009}$; Onde:

Y – Carga a ser encontrada;

X – Vão considerado.

Atribuindo para o valor de "X" o valor de 1700mm do vão das telhas, encontramos um valor de 323,61 Kg/ m², ou seja, o valor admissível que a telha suporta em função do vão de 1,7m de comprimento.

Após encontrar o carregamento admissível para as telhas da cobertura, é possível e necessário conhecer os carregamentos atuantes, para isto tem-se o quadro a seguir:

Quadro 11: Valores dos carregamentos

Quadro 11. Varores dos carregamentos	
PESO PRÓPRIO (PP)	20,05 N/m²
SOBRECARGA (SC)	250 N/m²
TOTAL	270,05 N/m²
VENTO SUCÇÃO	-1020 N/m²
COMBINAÇÃO – PP + SC	270,05 N/m²
COMBINAÇÃO – PP + VENTO 1	-999,05 N/m²

Fonte : O autor.

Deste modo, há de se considerar que o carregamento de 3236,1 N/m² é superior a pior condição ou combinação a que as telhas da cobertura estão sendo submetidas de -999,05 N/m².

4.5 Carregamento nas telhas do fechamento lateral

Do mesmo modo, considerando um vão de 1,45m de uma altura total de 2,9m e utilizando a mesma equação do item **4.2.3**, foi encontrado o valor admissível de 2334,7 N/m².

Para o fechamento lateral assim como para a cobertura, foi utilizada a pior condição da pressão dinâmica do vento, entretanto o valor do coeficiente médio para fechamento lateral será de -1,3, conforme mostra o quadro 12:

Quadro 12: Valores dos coeficientes para cálculo das telhas da cobertura e fechamento lateral.

COEFICIENTES PARA CÁLCULO DAS TELHAS							
LATERAL FRONTAL COBERTURA							
Cpe	-1.1	0.7	-1.8				
Срі	-0.2	0.3	-0.2				
TOTAL	-1.3	1	-2				

Fonte: O autor

Assim é possível determinar o carregamento atuante nas telhas laterais, multiplicando o valor do coeficiente em questão pela pressão dinâmica do vento, é dado:

Vento = $-1.3 \times 0.51 \times 1000$

Vento = $-663 \text{ N/m}^2 \text{ (sucção)}$

Como o valor de -663 N/m² é inferior ao admissível de 2334,7 N/m², as telhas do fechamento lateral atendem a favor da segurança.

4.6 Carregamento das terças

Para o cálculo das terças serão considerados todos os cálculos anteriores, em vista de que as terças deverão suportar além de seu peso próprio, também o peso dos carregamentos das telhas e a sobrecarga considerada.

Desta maneira é dada as informações abaixo do perfil de aço utilizado como terça da cobertura na estrutura:

Quadro 13: Dados do perfil da terça da cobertura

	Dimensões	da terça		S	Р	Jx	Wx	ix	еу	Ју	Wy	ly
h	В	d	e=r		ka/m	cm/l	cm ³	cm	cm	cm/l	cm ³	cm
mm	mm	mm	mm	cm*	cm² kg/m	cm4	cm³	cm	cm	cm4	cm³	cm
75	40	15	3.04	4.9	3.85	41.1	10.9	2.9	1.48	10.38	4.13	1.46

Fonte: O autor

Observada a informação na Coluna "P" ou seja, o peso por metro linear do perfil, é possível estimar o carregamento do peso próprio da peça. Neste caso serão descritos no quadro 14 os carregamentos que a terça deverá suportar:

Ouadro 14: Carregamentos considerados para dimensionamento das tercas da cobertura

PESO PRÓPRIO TERÇAS	$22,56 \text{ N/m}^2 \text{ x } 1,7\text{m} = 38,35 \text{ N/m}$
PESO PRÓPRIO DAS TELHAS	$20,05 \text{ N/m}^2 \text{ x } 1,7\text{m} = 34,08 \text{ N/m}$
TOTAL	72,71 N/m
SOBRECARGA	250 N/m ² x 1,7m = 426,66 N/m
VENTO SUCÇÃO	$-1020 \text{ N/m}^2 \text{ x } 1,7\text{m} = -1740,8 \text{ N/m}$

Fonte : O autor

Para facilitar e melhorar a precisão dos cálculos, foi utilizado o software ftool, que possibilita lançar os carregamentos encontrados na planilha para uma visualização do comportamento da estrutura, assim como determinar o esforço cortante máximo e o momento fletor máximo.

As terças possuem comprimento entre as tesouras de 3,45m e possuem distância paralelas entre elas de 1,7m, deste modo, chega-se a uma área de influencia de 5,88m². Logo o comprimento de uma água do banzo superior das treliças possui 5,12m de comprimento divididos em três vãos.

Os carregamentos foram divididos em duas combinações, sendo chamado de carregamento 1 o peso próprio dos elementos que a terça deverá suportar, mais o peso do próprio perfil da terça somados a sobrecarga encontrada. O carregamento dois é o mesmo valor do peso

próprio anterior somado ao valor negativo do vento de sucção, mostrados a seguir respectivamente:

Figura 22: COMBINAÇÃO 1 – PESO PRÓPRIO + SOBRECARGA (KN/m)

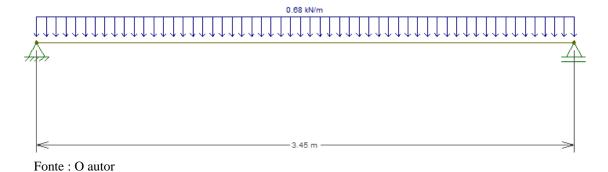
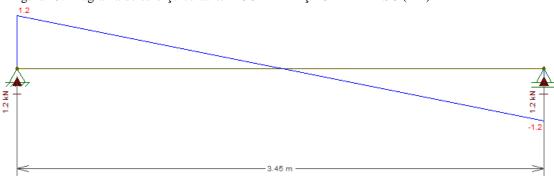
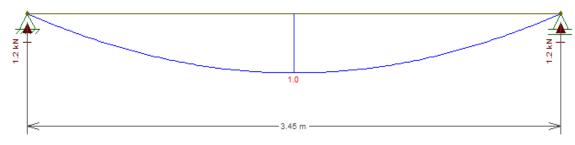




Figura 23: Diagrama de esforço cortante – COMBINAÇÃO 1 – PP + SC (KN)

Fonte: O autor

Figura 24: Diagrama de momento fletor – COMBINAÇÃO 1 – PP + SC (KN.m)

Fonte: O autor.

Do mesmo modo, temos o carregamento 2 (dois), considerando o peso próprio dos componentes somado ao vento de sucção, temos:

Figura 25: COMBINAÇÃO 2 – PESO PRÓPRIO + VENTO (KN/m)

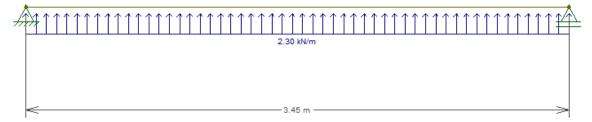
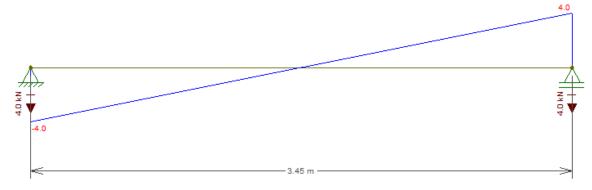
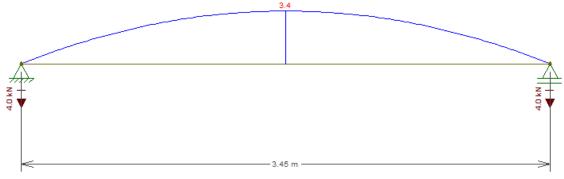




Figura 26: Diagrama de esforço cortante – COMBINAÇÃO 2 – PP + VENTO (KN)

Fonte: O autor

Figura 27: Diagrama de momento fletor – COMBINAÇÃO 2 – PP + SC (KN.m)

Fonte: O autor

4.7 Verificação do perfil da terça

Uma vez conhecidos os esforços internos e o perfil empregado na estrutura, é possível determinar se o perfil irá atender aos requisitos dispostos na norma ABNT NBR 8800: 2008. Sendo assim, a seguir, será descrito o roteiro para determinação dos esforços suportados pelo perfil. Dado novamente o quadro 15:

Quadro 15: Dados do perfil da terça da cobertura

	Dimensões	da terça		S	Р	lx	Wx	rx	еу	ly	Wy	ry
h	В	d	e=r	cm ²	ka/m	cm4	cm ³	cm	cm	cm/l	cm ³	cm
mm	mm	mm	mm	cm²	cm² kg/m	un4 un	cm³	cm	cm cm	cm4	cm³	cm
75	40	15	3.04	4.9	3.85	41.1	10.9	2.9	1.48	10.38	4.13	1.46

Logo no início da verificação, é determinado um valor médio para adotar-se o perfil mais próximo da necessidade real da estrutura em função do vão, deste modo temos:

$$L/60 < d < L/40$$
,

ou seja,

 $3450/60 = 57,5 > \mathbf{d} > 3450/40 = 86,25$, como a altura da terça utilizada é de 75mm, o perfil esta dentro do limite de pré-dimensionamento.

Logo em seguida é determinado os valores para os estados limites de FLM, FLA e FLT, respectivamente:

Para o Eixo X,

Quadro 16: Verificação para FLM

FLM - Verificaçã	
λ	13.15789474
λp	10.74802307
λr	28.05912126
Kc	0.805315673
θ Tensão res.	75
Wc (cm³)	20.55
Mcr (KN/cm)	1638.01584
Mcr (N.m)	16380.1584

Fonte: O autor

Quadro 17: Verificação para FLA

FLA - Verificação eixo X					
λ	22.67105263				
λр	106.3488599				
λr					
Mpl (KN.cm)	305.2				
Mpl (N.m)	3052				

Quadro 18: Verificação para FLT

Quadro 16. Vermeação para 1 L 1						
FLT - Verificação	eixo X					
λ	236.3013699					
λp	49.7803174					
λr	215.3239972					
β1	0.065775862					
θ Tensão res.	75					
(N/m^2)	72					
J (cm4)	0.145009576					
Cw	74.74460257					
Cb	1					
Mcr (KN.cm)	145.9702698					
Mcr (N.m)	1459.702698					

Fonte: O autor

Sendo assim, os valores de 16.380,16N.m, 3052,0N.m e 1459,7N.m são os valores correspondentes aos estados limites relativos a flexão do perfil para o eixo "X".

Já para o eixo "Y", os valores serão verificados somente para FLM, pois se tratando de flexão composta, o estado limite para FLA só é tratado para a alma do perfil, quanto a FLT, não há comprimento para ser considerado, logo não irá haver flambagem lateral com torção.

Quadro 19: Verificação para FLM

FLM - Verificação eixo Y							
	λ						
	λp						
	λr						
Mo	cr (KN/cm)	117.6714445					
١	5.19						
N	1176.714445						

Após o conhecimento dos carregamentos suportados pelo perfil, é feito a verificação dos esforços combinados, dada a seguinte relação:

(Msdx / Mrdx) + (Msdy / Mrdy) < 1

Onde:

Msd – Momento fletor máximo atuante;

MRd – Momento fletor admissível da peça.

Inserindo os valores correspondentes, a verificação ficará da seguinte maneira:

Para combinação 1 – Peso Próprio + Sobrecarga

$$(669,22 / 3052 \times 0.9) + (1004,74 / 1176,71 \times 0.9) = 1,046 > 1$$

Para combinação 2 – Peso próprio + Vento

$$(39.2 / 3052 \times 0.9) + (3479.67 / 1176.71 \times 0.9) = 3.27 > 1$$

Nota-se que os valores utilizados para MRd são os menores;

Para as duas combinações acima, nenhum dos valores foi menor que 1, ou seja, a peça não atende para esta verificação dos esforços combinados.

Em seguida há a verificação ao esforço cortante, utilizando o maior valor encontrado que, neste caso, relacionado à combinação 2 - PP + VENTO, sendo o valor do esforço cortante máximo de 4,0 KN, temos o quadro 20:

Quadro 20: Verificação para esforço cortante (KN).

Verificação força cortante							
Vy max. (KN) y	4						
λ	22.67105263						
λр	69.57010852						
Kv	5						
Vpl (KN)	34.2						
VRd (KN)	31.09090909						
Como VRd > Vy	OK						

Já nesta verificação é possível aprovar a peça, uma vez que o esforço atuante no perfil é inferior ao esforço máximo que a peça pode ser submetida. Neste caso:

Vsd = 4 KN < VRd = 31,09 KN

Vsd – Esforço cortante atuante;

VRd – Esforço cortante admissível.

Para a última verificação, é calculada a flecha atuante, para este caso temas o quadro 21:

Quadro 21: Verificação da flecha máxima

FLECHA MAXIMA						
Sentido descendente PP + SC						
ç	1.082487535					
Sentido ascendente PP + VENTO 1						
ς	-3.74891163					

Fonte: O autor

Para a combinação 1 – Peso próprio + Sobrecarga, temos a equação da flecha máxima descendente:

Flecha máxima admissível = 345 / 180 = 1,91cm.

Neste caso,

1,08 cm < 1,91 cm

Para a combinação 2 – Peso próprio + Vento, temos a equação da flecha máxima ascendente:

Flecha máxima admissível = 345 / 120 = 2,87cm

Neste caso,

3,74 cm > 2,87 cm

Deste modo, a primeira combinação atende a verificação para flecha máxima descendente, porém a segunda combinação não atende a verificação, uma vez que a flecha atuante é superior à flecha máxima admissível ascendente.

4.8 Cálculo e verificação das tesouras

Para o cálculo das tesouras, assim como as terças, foi considerado os resultado anteriores, uma vez que as terças estão apoiadas nas tesouras.

Como já informado, as tesouras possuem distancia entre as mesmas de 3,45m, totalizando quatro tesouras ao longo da estrutura.

Utilizando o Software AutoCad, foi possível desenhar a treliça de modo organizado e preciso, possibilitando uma precisão maior aos cálculos.

As medidas das barras da tesoura são apresentadas na figura 28:

5.12 1.00 1.00 1.00 1.00 5.00 Fonte: O autor

Figura 28: Medidas das barras em metros.

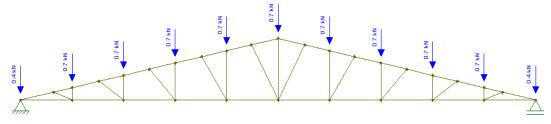
Logo após, é possível estabelecer o peso da tesoura, somando primeiramente o comprimento das barras, mostrados no quadro 22:

Quadro 22: Comprimentos das barras da tesoura.

L banzo superior	10,24m
L banzo inferior	10m
L montantes	5,5m
L diagonais	7,36m

L total	33,1m

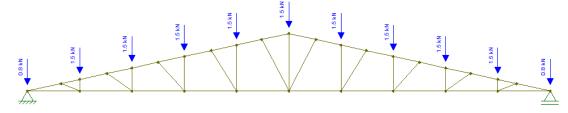
Como perfil utilizado é do tipo "C" – 7,3cm² x 5,3Kg/m, multiplicando o comprimento total pelo peso por metro, é possível determinar o peso próprio da treliça, somando então aos pesos das verificações anteriores, chegando nos valores de:


Quadro 23: Peso próprio das barras da tesoura.

Peso próprio das telhas	34,21 N/ m
Peso próprio das terças	38,5 N/ m
Peso próprio da tesoura	53 N/ m ² x 33,1m = 1896,63 N /m
TOTAL	1969,34 N/ m
Sobrecarga	426,66 N/ m

Fonte: O autor.

Multiplicando os valores (N/ m) pelo comprimento de 3,45m do vão entre as terças, obtemos o carregamento pontual da treliça, mostrado a seguir na figura 29:


Figura 29: Carregamentos pontuais peso próprio (KN).

Fonte: O autor

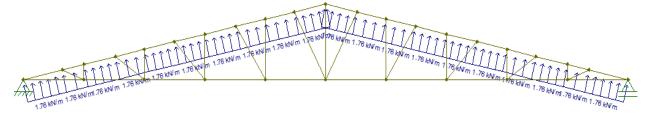

Do mesmo modo, os carregamentos pontuais para a sobrecarga foram lançados na tesoura, mostrados na figura 30:

Figura 30: Carregamentos pontuais sobrecarga (KN).

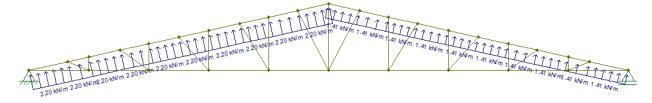
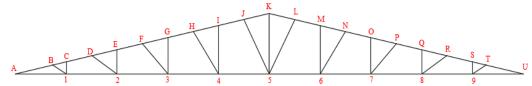

Para a consideração do carregamento devido ao vento, foram lançados as duas considerações mostradas anteriormente no cálculo dos ventos, sendo elas o caso A e caso B, mostradas a seguir:

Figura 31 Carregamento distribuído vento caso A - (KN/m).

Fonte: O autor


Figura 32: Carregamento distribuído vento caso B - (KN/m).

Fonte: O autor

Para uma melhor orientação e praticidade nos cálculos, foram padronizados os nós das tesouras, utilizando ordem alfabética da esquerda para a direita no banzo superior, no entanto, no banzo inferior, utilizou-se números de 1 a 9, contados também da esquerda para a direita.

Figura 33: Padronização dos nós.

Após o lançamento dos carregamentos, é possível com a ajuda do software Ftool determinar os esforços normais atuantes nas barras da treliça, de modo que haverão barras tracionadas e comprimidas. Os carregamentos das barras foram lançados em planilha com ajuda do software Excel, organizando-os e logo em seguida executando a combinação das cargas.

Quadro 24: Carregamento e combinação dos carregamentos nas barras - (N)

POSIÇÃO	BARRA	PP (N)	SC (N)	VENTO 1 (N)			PP + VENTO 1		MÁX. TRAÇÃO	MÁX. DE COMPRESSÃO	ESFORÇO/ CÁLCULO
	AB	-14600	-31400	38700	43600	-46000	24100	29000	44900	-46000	
	BC	-14500	-31000	36700	41000	-45500	22200	26500			
	CD	-13700	-29500	35500	39500	-43200	21800	25800			
	DE	-12900	-27600	32800	36200	-40500	19900	23300			
	EF	-12200	-26200	31600	34600	-38400	19400	22400			
	FG	-11300	-24100	28900	31300	-35400	17600	20000			
	GH	-10600	-22600	27500	29500	-33200	16900	18900			
	HI	-9700	-20700	25100	26500	-30400	15400	16800			
	IJ	-8900	-19100	23500	24500	-28000	14600	15600			
	JK	-8300	-17700	21700	22200	-26000	13400	13900			
Banzo superior	KL	-8300	-17700	21700	22200	-26000	13400	13900			
	LM	-8900	-19100	23500	24500	-28000	14600	15600			
	MN	-9700	-20700	25100	26500	-30400	15400	16800			Ì
	NO	-10600	-22600	27500	29500	-33200	16900	18900			1
	OP	-11300	-24100	28900	31300	-35400	17600	20000			
	PQ	-12200	-26200	31600	34600	-38400	19400	22400			
	QR	-12900	-27600	32800	36200	-40500	19900	23300			
	RS	-13700	-29500	35500	39500	-43200	21800	25800			
	ST	-14500	-31000	36700	41000	-45500	22200	26500			
	TU	-14600	-31400	38700	43600	-46000	24100	29000			
	A1	14300	30600	-37700	-43300	44900	-23400	-29000			
	1.2	13500	29000	-34300	-39100	42500	-20800	-25600			
	2.3	12100	25900	-30300	-34100	38000	-18200	-22000			
	3.4	10600	22600	-26100	-28800	33200	-15500	-18200			
	4.5	9000	19300	-22000	-23600	28300	-13000	-14600			
Banzo inferior	5.6	9000	19300	-22000	-22300	28300	-13000	-13300			
	6.7	10600	22600	-26100	-25600	33200	-15500	-15000			
	7.8	12100	25900	-30300	-29000	38000	-18200	-16900			
	8.9	13500	29000	-34200	-32200	42500	-20700	-18700			
	9U	14300	30600	-37700	-34900	44900	-23400	-20600			
	C1	0	0	-700	-900	0	-700	-900			
	E2	500	1100	-1800	-2300	1600	-1300	-1800			
	G3	1100	2300	-3200	-4000	3400	-2100	-2900			
ļ	14	1600	3500	-4600	-5800	5100	-3000	-4200			
Montante	K5	4000	8600	-11100	-11400	12600	-7100	-7400			
	M6	1600	3500	-4600	-4700	5100	-3000	-3100			
ļ	07	1100	2300	-3200	-3800	3400	-2100	-2700			
	Q8	500	1100	-1800	-2900	1600	-1300	-2400			
	S9	0	0	-700	-1900	0	-700	-1900			

	B1	-200	-500	2400	3000	-700	2200	2800		
	D2	-1200	-2500	3700	4600	-3700	2500	3400		
	F3	-1700	-3500	4700	5900	-5200	3000	4200		
	H4	-2100	-4600	5900	7400	-6700	3800	5300		
Diagonals	J5	-2000	-4400	5800	7100	-6400	3800	5100		
Diagonais	L5	-2000	-4400	5800	4700	-6400	3800	2700		
	N6	-2100	-4600	5900	4700	-6700	3800	2600		
	P7	-1700	-3500	4700	3600	-5200	3000	1900		
	R8	-1200	-2500	3700	2900	-3700	2500	1700		
	T9	-200	-500	2400	1900	-700	2200	1700		

Conhecendo os carregamentos atuantes nas barras, é possível então executar a verificação. Como toda a tesoura foi executada com a mesma seção transversal, foi possível utilizar apenas o maior carregamento para determinar se o perfil utilizado atende aos requisitos da norma ABNT NBR 8800: 2008.

Tomando como maiores carregamentos os seguintes valores:

- Máximo esforço de tração = 44.900 N
- Máximo esforço compressão = -46.000 N

A partir destes valores é possível comparar se os valores suportados pela peça serão maiores que os atuantes.

O perfil utilizado para toda tesoura é "C" – 7,3cm² x 5,73Kg/m, cujas propriedades mecânicas são mostradas no quadro 25:

Quadro 25: Dados do perfil da tesoura.

Dimenso	čes coluna		S	P	lx	Wx	rx	ey	ly	Wy	ry
h	В	e=r	cm ²	kg/m	cm4	cm3	cm	cm	cm4	cm³	cm
mm	mm	mm	cm²	Kg/III	UII4	cm³	cm	cm	UII4	uii	cm
127	50	3.42	7.3	5.73	171.5	27	4.84	1.26	17.02	4.55	1.52
12.7	5	0.342									

Fonte: O autor

Baseando-se no maior carregamento encontrado, a favor da segurança, o carregamento comparado foi de -46.000 N. O comprimento útil utilizado para considerar o efeito da força axial de flambagem elástica, ou seja, estado limite para uma peça sujeita a compressão, foi de 66 centímetros. Este comprimento é variável dependendo de nó para nó, no entanto para efeito de cálculo este foi o maior comprimento entre os nós das treliças encontrado.

Dado o dimensionamento temos o quadro 26:

Quadro 26: Verificação à compressão do perfil da tesoura - (N).

	· ' '
λ	52.631579
b/t	35.134503
Q	1
Nex (KN)	5284.1294
λο	0.0025566
Х	0.9978622
Nc, Rd (N)	130078.46
Nc, Rd (N) / 1,1	118253.15

Fonte: O autor

Onde:

Nd = Esforço atuante na peça;

Nc, Rd = Esforço admissível da peça.

Nd = -46.000 N x 1,4 = -64.400 N

Nc, Rd = 118.253,15 N

Como Nd < Nc, Rd o perfil atende a verificação proposta.

4.9 Cálculo e verificação das colunas

A ultima peça a ser verificada são os pilares ou colunas, estes que por sua vez suportam os carregamentos das tesouras.

Utilizando o software Ftool, determinou-se as reações de apoio das combinações tratadas anteriormente, e com o auxílio do software Excel, foi possível organizar os carregamentos referentes às reações de apoio, conforme mostra o quadro 27:

Quadro 27: Combinações das reações de apoio - (N).

		Ca	rregamento	unitário (N)	Carregamento combinado (N)					
Apoio	Reação	PP	SC	Vento 1	Vento 2	PP+SC	PP+ vento 1	PP+ vento 2	PP+SC+ vento 1	PP+SC+vento 2
Δ.	Horizontal				900		0	900	0	900
A	Vertical	3500	7500	-8800	-10000	11000	-5300	-6500	2200	1000
В	Horizontal					0	0	0	0	0
P P	Vertical	3600	7600	-8800	-8100	11200	-5200	-4500	2400	3100

Nota-se um destaque para a coluna de PP + SC na ultima linha da tabela acima, ou seja, o valor de 11.200 N é o maior valor encontrado para as combinações das reações de apoio que consequentemente serão transferidas no topo do pilar. O quadro a seguir mostra os valores somados para a consideração final dos carregamentos suportados pelos pilares:

Quadro 28: Valores dos pesos considerados na verificação da coluna (N).

Peso próprio do pilar	876,17 N				
(1) Peso próprio + sobrecarga	11.200 N				
N total Total	12.076,17 N				
Nd x 1,4	16.906,64 N				

(1) Maior carregamento referente à reação de apoio

Fonte: O autor

Após o conhecimento das forças atuantes, é possível então determinar o carregamento admissível dos perfis da coluna, no entanto, antes, é necessário determinar os parâmetros do perfil duplo como, momento de inércia, área da seção, módulo de resistência etc. A seguir o quadro 29 irá informar os dados do perfil (unitário) utilizado:

Quadro 29: Dados do perfil coluna.

Di	Dimensões coluna		S	Р	lx	Wx	rx	ey	ly	Wy	ry
h	В	e = r	cm ²	kg/m	cm/l	cm³	cm	cm	cm4	cm ³	cm
mm	mm	mm	cm²	Kg/III	cm4	CIII	cm	cm	CIII4	cm³	cm
150	50	3.8	8.93	7.01	279.7	37.2	5.59	1.17	19.62	5.12	1.48
15	5	0.38									

Fonte: O autor

A coluna é composta por dois perfis trabalhando simultaneamente como um só, como mostrado a seguir

Figura 34: Perfil composto da coluna

Fonte: O autor

Deste modo temos os parâmetros calculados para os dois perfis trabalhando simultaneamente:

Quadro 30: Dados calculados para dois perfis "C".

A (cm²)	Ix (cm4)	Wx (cm³)	rx (cm)	d (cm)	ly	Wy	ry
17.86	559.4	745.8666667	5.59655149	9.62	2212.243	602.791	11.12950082

Fonte: O autor

Para as verificações quanto à estabilidade do pilar, são necessários as verificações para os carregamentos atuantes na coluna. Deste modo, o carregamento 1 (um) leva em consideração o esforço axial de compressão, utilizando o maior esforço devido a reação de apoio.

Quadro 31: Carregamento admissível para esforço axial de compressão (N).

CARREGAMENTO 1		
P perfil (N)	876.1700625	
P Reação de apoio (N)	11200	
Total (N)	12076.17006	
ND γ 1,4 (N)	16906.63809	
λ	73.79544363	
b/t	37.47368421	
b/t lim	42.14356416	
Q	1	
Nex (KN)	158.4447067	
λο	0.094301369	
Х	0.924095607	
Nc, Rd (N)	147360.2459	

Diferentemente, o carregamento 2 (dois) considera o segundo maior esforço axial de compressão de 11.000 N, porém é considerado também juntamente o momento fletor devido ao carregamento do vento 2(dois) do apoio "A" além do esforço cortante máximo devido ao esforço proveniente também do vento 2(dois).

Quadro 32: Esforço axial de compressão (Nd), Momento fletor (Md) e Esforço cortante (Vd).

(1:14) C Estorgo Cortante (
CARREGAMENTO 2		
P perfil (N)	876.1701	
P Reação de apoio (N)	11000	
Normal (N)	11876.17	
Nd γ 1,4 (N)	16626.64	
M (N.m)	5310	
Md γ 1,4 (N.m)	7434	
V (N)	900	
Vd γ 1,4 (N)	1260	

Fonte: O autor

Do mesmo modo, é necessário a verificação dos estados limites a flexão, sendo flambagem lateral da mesa, flambagem lateral da alma e flambagem lateral com torção respectivamente:

Quadro 33: FLA - Flambagem lateral da alma

FLA - Verificação eixo X			
λ	39.4736842		
λр	106.34886		
λr			
Mpl (KN.cm)	2083.2		
γ 1,1 (N.m)	18938.1818		

Quadro 34: FLM - Flambagem lateral da mesa

FLM - Verificação eixo X			
λ	13.15789		
λр	10.74802		
λr	28.05912		
Kc	0.636658		
θ Tensão res.	75		
Wc (cm³)	111.88		
Mcr (KN.cm)	8917.821		
Mcr (KN.cm) x 2	17835.64		
γ 1,1 (N.m)	162142.2		

Fonte: O autor

Para a verificação do estado limite para FLT – Flambagem lateral com torção, foi utilizado o comprimento de flambagem de 5,9m, sendo que, como há as vigas de fechamento lateral, estas funcionam como travamento intermediário logo acima da alvenaria, porém como medida de verificação a favor da segurança, o travamento das vigas foi desprezado, utilizando assim todo comprimento da coluna.

Quaro 35: FLT - Flambagem lateral com torção.

FLT - Verificação eixo X			
λ	105.4220623		
λp	49.7803174		
λr	129.5286894		
β1	0.224482759		
θ Tensão res. (N/m²)	75		
J (cm4)	0.4568094		
Cw	753.2381793		
Cb	1		
Mcr (KN.cm)	418.5123141		
γ 1,1 (N.m)	3804.657401		

Após a determinação dos esforço admissíveis, é então feito a verificação segunda a ABNT NBR 8800: 2008, onde o valor final da verificação deverá ser inferior a 1.

Quadro 36: Verificação dos esforços combinados.

Verificação dos esforços combinados					
COMBINAÇÃO	0.15867852	<	1	OK	

Fonte: O autor

Por ultimo, há a verificação ao esforço cortante, este proveniente do vento 2(dois), sendo que, Vy max – esforço cortante atuante deverá ser inferior a VRd – esforço cortante máximo admissível.

Quadro 37: Verificação ao esforço cortante

_				
	Verificação força cortante			
	Vy max. (KN) y	0.9		
	λ	37.47368421		
	λр	69.57010852		
	Kv	5		
	Vpl (KN)	171		
	VRd (KN)	155.4545455		
	Como VRd > Vy	OK		

Fonte: O autor

 $\label{eq:comov} Como\ Vy\ max - Esforço\ cortante\ máximo < VRd - Esforço\ cortante\ máximo\ admissível,$ a coluna atende para esta verificação.

5 RESULTADOS E DISCUSSÕES

Neste capítulo serão listadas as verificações executadas nos tópicos anteriores, sendo dispostos em tabelas os valores e as informações adquiridas, no intuito de resumir e esclarecer os pontos pertinentes ao trabalho.

5.1 Telhas da cobertura e fechamento lateral

Mediante aos resultados encontrados, temos que, algumas verificações não atendem aos requisitos da norma ABNT NBR 8800: 2008, esta que por sua vez é o objeto central do trabalho. Apesar de nem todas as condições atenderem, nota-se que não há risco eminente de ruptura da estrutura, uma vez que as condições exigidas devem atender a fatores de segurança impostos e exigidos previamente pela norma.

A seguir será apresentado um quadro resumo de todos os carregamentos atuantes e as respectivas verificações tratadas nos capítulos anteriores:

Quadro 38: Resumo telhas

ITEM	CARREGAMENTO	CARREGAMENTO	FATOR DE
	ATUANTE	ADMISSÍVEL	SEGURANÇA
Telhas da cobertura	-999,05 N/m²	3236,1 N/m²	3,24
Telhas do	-663,0 N/m²	2334,7 N/m²	3,52
fechamento lateral			

Fonte: O autor

Como os carregamentos atuantes são inferiores aos admissíveis, as telhas empregadas estão a favor da segurança. Nota-se que os fatores de segurança de 3,24 e 3,52, possuem uma folga considerável em relação aos esforços atuantes.

É de suma importância informar ao leitor que a ABNT NBR 8800: 2008, não trata em seu texto sobre telhas da cobertura e telhas de fechamento, no entanto, para uma qualidade aprimorada do trabalhado e levando em conta também que as telhas fazem parte da estrutura, as telhas foram analisadas e estudadas como todas as outras demais repartições da estrutura.

5.2 Análise final das terças

As terças foram verificadas respectivamente a flexão, esforço cortante e determinação das flechas máximas. Com intuito de organizar os dados, as tabela a seguir descrevem os valores encontrados e em seguida faz-se uma análise sobre as condições encontradas.

Oudro 39: Momentos admissíveis das terças para estados limite ultimo

ITEM	Mcr (N.m)
FLMx	16.380,15
FLAx	3052,0
FLTx	1459,7
FLMy	1176,71

Fonte: O autor

Do mesmo modo a tabela x identifica os esforços atuantes considerados na verificação dos esforços.

Quadro 40: Momentos atuantes das terças

COMBINAÇÃO 1 – PP + SC - X	669,22 (N.m)
COMBINAÇÃO 1 – PP + SC - Y	1004,74 (N.m)
COMBINAÇÃO 2 – PP + VEN - X	39,2 (N.m)
COMBINAÇÃO 2 – PP + VEN - Y	3479,67 (N.m)

Fonte: O autor

Concluindo, para a verificação à flexão dos esforços combinados temos:

Quadro 41: Verificação dos esforços combinados

COMBINAÇÃO 1	COMBINAÇÃO 2
1,046 > 1	3,27 > 1

Fonte: O autor

De acordo com a ABNT NBR 8800: 2008, as combinações 1 e 2 a flexão, isto é, os valores encontrados devem ser inferiores a 1, como todas as duas condições são superiores, nenhuma das verificações atendem a norma.

Já para o esforço cortante temos as seguintes condições:

Quadro 42: Resumo esforço cortante

Vy – Esforço cortante atuante	4000 N
VRd – Esforço cortante admissível	31.090 N
Vy < VRd	OK
FATOR DE SEGURANÇA	7,77

Fonte: O autor

Observa-se que o coeficiente de segurança encontrado para a verificação ao esforço cortante é um valor considerável, no entanto isso também é um indicativo que para este tipo de carregamento a peça utilizada não esta sendo utilizada a sua eficiência máxima.

Por ultimo, é feito a verificação a flecha máxima, para este caso temos:

Ouadro 43: Resumo verificação das flechas

ITEM	ESFORÇO		ESFORÇO	FATOR DE
	ATUANTE (cm)		ADMISSÍVEL (cm)	SEGURANÇA
Descendente PP + SC	1,082	<	1,91	1,76
Ascendente PP + VEN	-3,74	>	2,87	(1) 0,76

(1) Não há fator de segurança

Fonte: O autor

Nota-se que, para a flecha ascendente a condição não atende a ABNT NBR 8800: 2008, no entanto este excesso de deformação só irá ocorrer em tempestades com uma pequena probabilidade de ocorrência, porém não causa riscos de queda ou ruptura da estrutura.

5.3 Treliça

Para a verificação das barras componentes da treliça, foram verificadas apenas para esforço normal de tração e compressão. Como o maior esforço atuante foi o de compressão, este foi o valor utilizado para a verificação geral, chegando aos valores dispostos no quadro 44:

Quadro 44: Carregamento atuante e carregamento admissível

ESFORÇO ATUANTE DE COMPRESSÃO –	46.000 N
N	
ESFORÇO ADMISSÍVEL DE	130.167,4 N
COMPRESSÃO – Nc, Rd	
ESFORÇO ATUANTE DE COMPRESSÃO x	64.400 N
1,4 - Nd	
ESFORÇO ADMISSÍVEL MINORADO / 1,1	118.334 N

Fonte: O autor

Utilizando os dois últimos resultados, sendo o carregamento atuante multiplicado pelo valor de de 1,4 e o valor do carregamento admissível dividido por 1,1 temos então:

Quadro 45: Verificação ao esforço normal de compressão

CONDIÇÃO PARA VERIFICAÇÃO	FATOR DE SEGURANÇA
64.400 < 118.334	1,83

Fonte: O autor

Como o valor atuante é menor que o valor admissível, nota-se que para esta verificação a treliça passa na verificação ao esforço normal.

Importante enfatizar que, algumas das bibliografias consultadas e citadas no trabalho executam a verificação ao esforço normal em todas as barras, isto é, para banzo superior, banzo inferior, montantes e diagonais, porém como a treliça estudada possui um único perfil, esta condição pode se aplicar somente a pior condição, que neste caso como já demonstrado é utilizado um comprimento de 66cm para a barra AB, sendo esta a barra como os maiores esforços axiais.

5.4 Coluna

As colunas assim como as terças foram verificadas a flexão e esforço cortante. Para flexão os valores atuantes são mostrados no quadro 46:

Quadro 46: Momentos admissíveis das colunas para estados limite ultimo

ITEM	Mcr (N.m)
FLMx	162.142,2
FLAx	18.938,18
FLTx	3804,65

Fonte: O autor

Em seguida são dispostos os valores dos carregamentos atuantes entre esforços normais e a flexão, onde é dado para o carregamento 1 (um) esforço axial atuante e esforço admissível, já para o carregamento 2 (dois), é encontrado um segundo valor para esforço axial, no entanto, no carregamento 2 (dois) é determinado o momento fletor e esforço cortante, como mostram os quadros 47 e 48 respectivamente:

Quadro 47: Carregamento 1, esforco axial de compressão

ITEM	Esforço atuante - Nd Esforço admissível -		Fator de
		Nc, Rd	segurança
Carregamento 1	16.906,64 N	147.360,24 N	8,71

Fonte: O autor

Quadro 48: Carregamento 2, esforço axial, momento fletor e esforço cortante.

Esforço normal - N	Momento fletor - Md	Esforço cortante - Vd
16.626, 64 N	7.434 N.m	1260 N

Fonte: O autor

Após o conhecimento dos esforços atuantes é possível fazer a verificação dos esforços combinados para a coluna, neste caso temos o seguinte resultado dado pelo quadro 49:

Quadro 49: Verificação dos esforços combinados

Combinação 1	0,158	<	1

Fonte: O autor

Como o valor da combinação 1 foi < 1, a verificação atende a ABNT NBR 8800: 2008.

Por fim, é necessário isoladamente verificar se o perfil da coluna suporta aos esforços cortantes, para isto é dado o quadro 50:

Quadro 50: Verificação ao esforço cortante

Esforço cortante atuante -	Esforço cortante admissível	Fator de segurança
$\mathbf{V}\mathbf{y}$	- VRd	
900 N	155.454,54 N	172,72

Fonte: O autor

Notadamente para esforço cortante, que neste caso proveniente da ação do vento, muito inferior ao esforço que a peça de fato poderá suportar.

Em todo caso para o elemento das colunas, estas passam e atendem as premissas da ABNT NBR 8800: 2008.

5.5 Sugestões

Tendo em vista que, o objeto central do trabalho é verificar através dos cálculos se a estrutura atende fundamentalmente a ABNT NBR 8800: 2008, podemos considerar que algumas das verificações não atendem as condições exigidas. Neste caso algumas modificações quanto a estrutura poderiam terem sido executadas e, ao final a estrutura bem como todos os elementos serem capazes seguramente de resistirem aos esforços.

O ponto fundamental para que todos os elementos atendam a ABNT NBR 8800: 2008, é reduzir matematicamente os esforços solicitantes, uma vez que, a estrutura encontra-se inteiramente executada.

É importante salientar que, as próximas verificações feitas não expressam em hipótese alguma a troca ou substituição de algum elemento estrutural, mas sim a adição de algum

elemento que posso auxiliar na resistência da estrutura e finalmente atender as condições propostas por norma.

Buscando uma solução viável diante das condições expressas, foi simulado que, entre os vãos entre treliças sejam dispostos tirantes para a redução do comprimento, agindo assim como uma espécie de travamento ou até mesmo apoio. Deste modo as terças e as vigas de fechamento lateral, estas que, conforme os cálculos mostrados anteriormente não atenderam as condições, foram considerados estes elementos de travamento imediatamente no centro do perfil em sua face longitudinal, reduzindo consequentemente os esforços atuantes.

Utilizando então um comprimento atualizado de 1,725m ou seja, metade do vão real, as verificações sofrem uma mudança significativa, como mostra o quadro 51:

Quadro 51: Verificação dos esforços combinados terça cobertura

Verificação dos esforços				
Combinação 1 PP + SC	0.261685377	<	1	OK
Combinação 2 PP + VENT 1	-0.81785051	<	1	OK

Fonte: O autor

Do mesmo modo, as flechas também passaram a atender as condições normativas, e reduziram seus deslocamentos o suficiente para serem inferiores aos admissíveis:

Quadro 52: Verificação das flechas máximas

FLECHA MAXIMA				
Sentido descendente PP + SC				
ς	0.067655471	<	ς	0.958333
Sentido ascendente PP + VENTO 1				
ç	-0.23430698	<	ς	1.4375

Fonte: O autor

Assim como as terças da cobertura, as vigas de fechamento lateral também não atenderam a combinação dos carregamentos, sendo o resultado final superior a 1 (um), diante disto, foi simulado travamentos em seu perfil longitudinal, reduzindo o comprimento da perfil, sendo assim, os valores foram atualizados conforme mostra o quadro 53:

Quadro 53: Verificação dos esforços combinados vigas laterais

Verificação do esforço combinado			
-0.353092528	<	1	OK

6 CONCLUSÃO

Ao longo do trabalho foi calculado e verificado as condições a que se passam os elementos estruturais do galpão metálico proposto. Notou-se uma grande variedade de equações e informações em torno das verificações, na busca contínua da maior proximidade com a realidade do imóvel.

Como já informado, o galpão opera atualmente sem maiores problemas, e muito provavelmente no que se diz respeito à estrutura, não haverá. A norma ABNT NBR 8800: 2008, norma que regulamenta as estruturas construídas em aço no Brasil, impõe medidas de segurança com coeficientes que elevam a qualidade e a confiabilidade das estruturas de aço, no entanto, quando não atendida, não significa que a construção não irá suportar ou que irá entrar em colapso definitivo, significa que o padrão estabelecido pela mesma poderá em algum momento ser superado por deformações excessivas ou ainda carregamentos excessivos.

Quanto aos elementos verificados que não atenderam as condições é necessário assim como citado anteriormente que, sejam tomadas as medidas cabíveis para a adequação a ABNT NBR 8800: 2008.

Quanto ao aspecto geral do trabalho, há de se considerar que este foi bem sucedido, uma vez que as informações foram levantadas e, o mais importante, os valores encontrados mostramse coerentes quando comparados com as bibliografias citadas e comparadas durante o trabalho.

Para finalizar, será resumido na tabela a seguir todas as verificações demonstradas durante todo o trabalho no intuito de facilitar o entendimento do leitor:

Quadro 54: Resumo telhas

ITEM	CARREGAMENTO	CARREGAMENTO	FATOR DE		
	ATUANTE	ADMISSÍVEL	SEGURANÇA		
Telhas da cobertura	-999,05 N/m²	3236,1 N/m²	3,24		
Telhas do fechamento lateral	-663,0 N/m²	2334,7 N/m²	3,52		

Quadro 55: Resumo terças 1

ITEM	Mcr (N.m)
FLMx	16.380,15
FLAx	3052,0
FLTx	1459,7
FLMy	1176,71
COMBINAÇÃO 1 – PP + SC - X	669,22 (N.m)
COMBINAÇÃO 1 – PP + SC - Y	1004,74 (N.m)
COMBINAÇÃO 2 – PP + VEN - X	39,2 (N.m)
COMBINAÇÃO 2 – PP + VEN - Y	3479,67 (N.m)
COMBINAÇÃO 1	COMBINAÇÃO 2
1,046 > 1	3,27 > 1
Vy – Esforço cortante atuante	4000 N
VRd – Esforço cortante admissível	31.090 N
Vy < VRd	OK
FATOR DE SEGURANÇA	7,77

Fonte: O autor

Quadro 56: Resumo terças 2

ITEM	ESFORÇO		ESFORÇO	FATOR DE		
	ATUANTE (cm)		ADMISSÍVEL (cm)	SEGURANÇA		
Descendente PP + SC	1,082	<	1,91	1,76		
Ascendente PP + VEN	-3,74	>	2,87	(1) 0,76		

Quadro 57: Resumo treliça

ESFORÇO ATUANTE DE COMPRESSÃO –	46.000 N
N	
ESFORÇO ADMISSÍVEL DE	130.167,4 N
COMPRESSÃO – Nc, Rd	
ESFORÇO ATUANTE DE COMPRESSÃO x	64.400 N
1,4 - Nd	

ESFORÇO ADMISSÍVEL MINORADO / 1,1	118.334 N
CONDIÇÃO PARA VERIFICAÇÃO	FATOR DE SEGURANÇA
64.400 < 118.334	1,83
CONDIÇÃO PARA VERIFICAÇÃO	FATOR DE SEGURANÇA
64.400 < 118.334	1,83

Fonte: O autor

Quadro 58: Resumo Coluna

ITE	EM		Mcr (N.m)				
FLI	Мx		162.142,2				
FL	Ax			18.938,1	8		
FL	Тх			3804,65	5		
ITEM	ITEM Esforço atuante - N				Fator de		
			Nc	, Rd	segurança		
Carregamento 1		16.906,64 N	147.36	50,24 N	8,71		
Esforço normal - 1	N	Momento flo	etor - Md	Esforç	co cortante - Vd		
16.626, 64 N		7.434 1	N.m		1260 N		
Combinação 1		0,158	<		1		
Esforço cortante atua	Esforço cortante atuante -		te admissível	Fator	r de segurança		
$\mathbf{V}\mathbf{y}$		- VR	- VRd				
900 N		155.454	,54 N		172,72		

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 6123: 1988** – Forças devidas ao vento em edificações.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 8800: 2008** - Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios.

CHAMBERLAIN, P.; FICANHA, R.; FABEANE, R. **Projeto e cálculo de estruturas de aço.** Edifício Industrial Detalhado. 8. Ed. Rio de Janeiro: Elsevier, 2013.

PFEIL, W.; PFEIL, M. **Estruturas de Aço.** Dimensionamento prático de acordo com a NBR 8800: 2008. 8. Ed. Rio de Janeiro: LCT, 2009.

FAKURY, R.; CASTRO E SILVA, A.; CALDAS, R. **Dimensionamento de elementos estruturais de aço e mistos de aço e concreto.** 1. Ed. São Paulo: Pearson Education do Brasil, 2016.

PINHEIRO, A. **Estruturas metálicas.** Cálculos, detalhes, exercícios e projetos. 2. Ed. São Paulo: Blucher, 2005.

PORTAL G1 – Disponível em: http://g1.globo.com/goias/transito/noticia/2014/04/trecho-da-br-153-e-interditado-para-instalacao-de-passarela-em-goiania.html>. Acesso em: 20 julho de 2018.

ANEXO I

FORÇAS ATUANTES – PLANILHA EXCEL

DADOS			DADOS			COEFICIENTES PARA CÁLCULO DAS TELHAS				
						CO				
Ângulo de inclinação	15	Vão das	terças (m)	3.45			LATERAL	FRONTAL	COBERTURA	
Peso distribuido das terças	38.5	Afastam	ento entre	1.706666667	667 Cpe -1.1 0.7			0.7	-1.8	
Peso próprio das terças (N/m²	22.55859375	Área de in	fluencia (m²)	5.888		Cpi -0.2 0.3 -0.2			-0.2	
Peso próprio das telhas (N/m² 20.05		Ltelh	ado (m)	5.12		TOTAL	-1.3	1	-2	
						Ca	rregamento nas	s telhas da cobertura		
						PF	(N/m²)		20.05	
Vk (N/m²)	510					SC	(N/m²)		250	
Sobrecarga (N/m²)	250					TOT	'AL (N/m²)		270.05	
						VENTO S	SUCÇÃO (N/m²)		-1020	
CARREGAMENTOS TE	RÇA	DECO	MPOSIÇÃO DAS	FORÇAS			Combinação d	le carregar	nentos	
PP telhas + PP terças (N/m)	72.71866667	PP+SC	qx (N/m)	129.2504351		PP +	PP + SC (N/m²)		270.05	
Sobrecarga (N/m)	426.6666667	PP+3C	qy (N/m)	482.3691907		PP + V	EN 1 (N/m²)		-999.95	
Vento (N/m)	-1740.8		qx (N/m)	18.82097587		carregamento suportado (N/m²)		2390		
		PP+VENTO	qy (N/m)	-1670.559162		carregamento suportado (N/m²)		2966		
COMBINAÇÃO DOS CARREGAN	MENTOS x 1,4	ESFORÇO	S INTERNOS SO	DLICITANTES		Carre	gamento das te	lhas fecha	mento lateral	
						٧	/ão (m)		1.45	
1 - (PP+SC) - x - (N/m)	180.9506092	M1 -	x (N.m)	269.2205782		VENTO P	RESSÃO (N/m²)		-663	
1 - (PP+SC) - y - (N/m)	675.316867	M1 - y (N.m)		1004.744876		carregamento suportado (N/m²)		1910		
2 - (PP+VEN) - x - (N/m)	26.34936621	M2 - x (N.m)		39.20291642		carregamento suportado (N/m²)			2390	
2 - (PP+VEN) - y - (N/m)	-2338.782827	M2 -	y (N.m)	-3479.670324						

ANEXO II

VERIFICAÇÃO DAS TERÇAS – PLANILHA EXCEL

	Dimensões	da terça		S	Р	lx	Wx	rx	ey	ly	Wy	ry
h	В	d	e = r	cm²	lea las	cm4	cm³			4	cm³	
mm	mm	mm	mm	cm-	kg/m	Cm4	cm	cm	cm	cm4	cm-	cm
75	40	15	3.04	4.9	3.85	41.1	10.9	2.9	1.48	10.38	4.13	1.46
L/	'd - L/60 < d	< L/40		E (Mpa)	ρa (Kg/m³)	Fy (Mpa)					erças - X (m)	3.45
L(mm)	3450		200000	7850	250				Vão das t	erças - Y (m)	
d	(m)	57.5										
d	(m)	86.25										
d	(m)	75										
FLM	- Verificaçã	io eixo X		Fl	.M - Verificação e							
	λ	13.15789474			λ	24.67105263						
	λp	10.74802307			λp	10.74802307						
					_							
	λr	28.05912126			λr	28.05912126						
	Kc	0.805315673		Mo	r (KN/cm)	117.6714445						
θ Ten	são res.	75		١	Vc (cm³)	5.19						
Wc	(cm³)	20.55		Mcr (N.m)		1176.714445						
					-							
Mcr (KN/cm)	1638.01584								1		
Mcr	(N.m)	16380.1584										

VERIFICAÇÃO DAS TERÇAS – PLANILHA EXCEL

FLA - Verificaçã	o eixo X					
λ	22.67105263					
λp	106.3488599					
ļ.,						
λr		Verificação dos est				
		Combinação 1 PP + SC	1.046741509	>	1	N OK
Mpl (KN.cm)	305.2	Combinação 2 PP + VENT 1	-3.27140204	^	1	N OK
Mpl (N.m)	3052					
		Verificação força co	rtante			
FLT - Verificaçã	o eixo X	Vy max. (KN) y	4			
λ	236.3013699	λ	22.67105263			
		λр	69.57010852			
λp	49.7803174	Kv	5			
		Vpl (KN)	34.2			
λr	215.3239972	VRd (KN)	31.09090909			
β1	0.065775862	Como VRd > Vy	ОК			
θ Tensão res.	75					
(N/m²)	/ /					
J (cm4)	0.145009576	FLECHA MAXIM	A			
Cw	74.74460257	Sentido descendente	PP + SC			
Cb	1	ς	1.082487535	<	ς	1.916667
Mcr (KN.cm)	145.9702698	Sentido ascendente PP	+ VENTO 1			
Mcr (N.m)	1459.702698	ç	-3.74891163	>	ς	2.875

ANEXO III

VERIFICAÇÃO DAS VIGAS LATERIAIS

	Dimens	ões da terça		S	P	lx	Wx	rx	ey	ly	Wy	ry
h	В	d	e=r	cm²	kg/m	cm4	cm³	cm	cm	cm4	cm³	cm
mm	mm	mm	mm	CIII	Kg/III	CIII4	CIII	CIII	CIII	CIII4	CIII	ciii
75	40	15	3.04	4.9	3.85	41.1	10.9	2.9	1.48	10.38	4.13	1.46
PP VIGA	S (N/m)	38.5		Ly (m)	Ly (m) 1.45							
PP TELHA	AS (N/m)	29.0725		Lx (m)	Lx (m) 3.45							
Y - PP to	tal (N/m)	67.5725										
X - Vent	:o (N/m)	-1930										
Esforço	s Internos	Solicitantes		Verificaç	ão do esfo	orço combi	nado					
Mx (N.m)	-2871.47813		-1.440070102	>	1	N OK					
My (N.m)	17.75889766										
Vx	(N)	-3329.25		Verifi								
Vy	(N)	48.9900625		31.090909	31.09090909 > 3.32961043							
V ((N)	3329.610426										

ANEXO IV

VERIFICAÇÃO DAS TESOURAS – PLANILHA EXCEL

Dimens	ões coluna		S	P	lx	Wx	rx	ey	ly	Wy	ry
h	В	e = r	cm²	kg/m	cm4	cm³	cm	cm	cm4	cm³	cm
mm	mm	mm	CIII	Kg/III	CITIF	CIII	CIII	CIII	CITI	CIII	CIII
127	50	3.42	7.3	5.73	171.5	27	4.84	1.26	17.02	4.55	1.52
12.7	5	0.342									
Banzo	superior										
Compressão (N)	Tração (N)	L (m)		E (Mpa)	ρa (Kg/m³)	Fy (Mpa)					
-46000	44900	0.66		200000	7850	250					
λ	43.421053	<	200								
b/t	35.134503	<	b/t lim	42.1436							
Q	1										
Nex (KN)	7763.6428										
λο	0.0017401										
Х	0.9985444										
Nc, Rd (N)	130167.4										
Nc, Rd (N) / 1,1	118334	>	-64400	OK							

ANEXO V

VERIFICAÇÃO DAS COLUNAS – PLANILHA EXCEL

CARREGAMEN	TO 1	CARREGAMENTO) 2				
P perfil (N)	876.1700625	P perfil (N)	876.1701				
P Reação de apoio (N)	11200	P Reação de apoio (N)	11000	FLA - Verificaçã	o eixo X	FLM - Verificação	eixo X
Total (N)	12076.17006	Normal (N)	11876.17	λ	39.4736842	λ	13.15789
ND γ 1,4 (N)	16906.63809	Nd γ 1,4 (N)	16626.64				
λ	73.79544363	M (N.m)	5310	λp	106.34886	λр	10.74802
b/t	37.47368421	Md γ 1,4 (N.m)	7434				
b/t lim	42.14356416	V (N)	900	λr		λr	28.05912
Q	1	Vd γ 1,4 (N)	1260			Kc	0.636658
Nex (KN)	158.4447067			Mpl (KN.cm)	2083.2	θ Tensão res.	75
λο	0.094301369			γ 1,1 (N.m)	18938.1818	Wc (cm³)	111.88
Х	0.924095607						
Nc, Rd (N)	147360.2459					Mcr (KN.cm)	8917.821
						Mcr (KN.cm) x 2	17835.64
						γ 1,1 (N.m)	162142.2

VERIFICAÇÃO DAS COLUNAS – PLANILHA EXCEL

FLT - Verificação eixo X	
λ	105.4220623
λp	49.7803174
λr	129.5286894
β1	0.224482759
θ Tensão res.	75
J (cm4)	0.4568094
Cw	753.2381793
Cb	1
Mcr (KN.cm)	418.5123141
γ 1,1 (N.m)	3804.657401
Verificação força cortante	
Vy max. (KN) y	0.9
λ	37.47368421
λр	69.57010852
Kv	5
Vpl (KN)	171
VRd (KN)	155.4545455
Como VRd > Vy	OK